Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Antioxidants (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37507917

RESUMO

Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.

2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077316

RESUMO

Impaired wound healing in patients with type 2 diabetes (DM2) is characterized by chronic inflammation, which delays wound closure. Specialized pro-resolving lipid mediators (SPMs) are bioactive molecules produced from essential polyunsaturated fatty acids (PUFAs), principally omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). SPMs are potent regulators of inflammation and have been used to suppress chronic inflammation in peripheral artery disease, non-alcoholic fatty liver disease, and central nervous system syndromes. LIPINOVA® is a commercially available safe-grade nutritional supplement made from a fractionated marine lipid concentrate derived from anchovy and sardine oil that is rich in SPMs and EPA, as well as DHA precursors. Here, we assessed the effect of LIPINOVA® in wound dressing applications. LIPINOVA® showed biocompatibility with keratinocytes and fibroblasts, reduced the abundance of pro-inflammatory macrophages (Mφ1), and promoted in vitro wound closure. Daily application of the marine oil to open wounds made by punch biopsy in db/db mice promoted wound closure by accelerating the resolution of inflammation, inducing neoangiogenesis and Mφ1/Mφ2 macrophage polarization. In conclusion, LIPINOVA® displays pro-resolutive properties and could be exploited as a therapeutic agent for the treatment of diabetic ulcers.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Administração Tópica , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Macrófagos , Camundongos , Cicatrização
4.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948064

RESUMO

The dextro-transposition of the great arteries (d-TGA) is one of the most common congenital heart diseases. To identify biological processes that could be related to the development of d-TGA, we established induced pluripotent stem cell (iPSC) lines from two patients with d-TGA and from two healthy subjects (as controls) and differentiated them into endothelial cells (iPSC-ECs). iPSC-EC transcriptome profiling and bioinformatics analysis revealed differences in the expression level of genes involved in circulatory system and animal organ development. iPSC-ECs from patients with d-TGA showed impaired ability to develop tubular structures in an in vitro capillary-like tube formation assay, and interactome studies revealed downregulation of biological processes related to Notch signaling, circulatory system development and angiogenesis, pointing to alterations in vascular structure development. Our study provides an iPSC-based cellular model to investigate the etiology of d-TGA.


Assuntos
Perfilação da Expressão Gênica/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Receptores Notch/genética , Transposição dos Grandes Vasos/patologia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Análise de Sequência de RNA , Transdução de Sinais , Transposição dos Grandes Vasos/genética
5.
Front Cell Dev Biol ; 9: 734143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532322

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are an emerging alternative to cell-based therapies to treat many diseases. However, the complexity of producing homogeneous populations of EVs in sufficient amount hampers their clinical use. To address these limitations, we immortalized dental pulp-derived MSC using a human telomerase lentiviral vector and investigated the cardioprotective potential of a hypoxia-regulated EV-derived cargo microRNA, miR-4732-3p. We tested the compared the capacity of a synthetic miR-4732-3p mimic with EVs to confer protection to cardiomyocytes, fibroblasts and endothelial cells against oxygen-glucose deprivation (OGD). Results showed that OGD-induced cardiomyocytes treated with either EVs or miR-4732-3p showed prolonged spontaneous beating, lowered ROS levels, and less apoptosis. Transfection of the miR-4732-3p mimic was more effective than EVs in stimulating angiogenesis in vitro and in vivo and in reducing fibroblast differentiation upon transforming growth factor beta treatment. Finally, the miR-4732-3p mimic reduced scar tissue and preserved cardiac function when transplanted intramyocardially in infarcted nude rats. Overall, these results indicate that miR-4732-3p is regulated by hypoxia and exerts cardioprotective actions against ischemic insult, with potential application in cell-free-based therapeutic strategies.

6.
Adv Healthc Mater ; 10(9): e2002121, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33720548

RESUMO

While coronary angioplasty represents an effective treatment option following acute myocardial infarction, the reperfusion of the occluded coronary artery can prompt ischemia-reperfusion (I/R) injury that significantly impacts patient outcomes. As ω-3 polyunsaturated fatty acids (PUFAs) have proven, yet limited cardioprotective abilities, an optimized polymer-conjugation approach is reported that improves PUFAs bioavailability to enhance cardioprotection and recovery in animal models of I/R-induced injury. Poly-l-glutamic acid (PGA) conjugation improves the solubility and stability of di-docosahexaenoic acid (diDHA) under physiological conditions and protects rat neonatal ventricular myocytes from I/R injury by reducing apoptosis, attenuating autophagy, inhibiting reactive oxygen species generation, and restoring mitochondrial membrane potential. Enhanced protective abilities are associated with optimized diDHA loading and evidence is provided for the inherent cardioprotective potential of PGA itself. Pretreatment with PGA-diDHA before reperfusion in a small animal I/R model provides for cardioprotection and limits area at risk (AAR). Furthermore, the preliminary findings suggest that PGA-diDHA administration in a swine I/R model may provide cardioprotection, limit edema and decrease AAR. Overall, the evaluation of PGA-diDHA in relevant preclinical models provides evidence for the potential of polymer-conjugated PUFAs in the mitigation of I/R injury associated with coronary angioplasty.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Ácidos Docosa-Hexaenoicos , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos , Polímeros , Ratos , Suínos
7.
Clin Genet ; 99(2): 269-280, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174221

RESUMO

Marfan syndrome (MFS) is a systemic connective tissue disorder caused by mutations in the fibrillin-1 (FBN1) gene, and cardiovascular involvement is the leading cause of mortality. We sought to examine the genotype/phenotype realtionship in 61 consecutive patients with a phenotype and genotype compatible with MFS. The FBN1 gene was analyzed by massive sequencing using a hybridization capture-based target enrichment custom panel. Forty-three different variants of FBN1 were identified, of which 17 have not been previously reported. The causal variants of MFS were grouped into mutations resulting in haploinsufficiency (HI group; 23 patients) and mutations producing a dominant-negative effect (DN group; 38 patients). Patient information was collected from electronic medical records and clinical evaluation. While no significant differences were found between the two groups, the HI group included more cases with aortic dissection and occurring at a younger age that the DN group (34.7% vs. 15.8%; p = 0.160). Irrespective of the mutation group, males presented with a higher probability of aortic involvement (4-fold higher risk than females) and aortic dissections events occurred at younger ages. Patients with DN variants carrying a cysteine substitution had a higher incidence of ectopia lentis.


Assuntos
Fibrilina-1/genética , Síndrome de Marfan/genética , Adolescente , Adulto , Doenças da Aorta/genética , Doenças Cardiovasculares/genética , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Estudos de Associação Genética , Genótipo , Haploinsuficiência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Adulto Jovem
8.
Stem Cells Int ; 2020: 8872009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101423

RESUMO

Human bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely linked to a more pronounced cell adhesion expression program.

9.
Front Cardiovasc Med ; 5: 152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410918

RESUMO

Extracellular vesicles (EVs) are small membrane vesicles secreted by most cell types with important roles in cell-to-cell communication. To assess their relevance in the context of heart ischemia, EVs isolated from the AC10 ventricular cardiomyocyte cell line (CM-EVs), exposed to normoxia (Nx) or hypoxia (Hx), were incubated with fibroblasts (Fb) and endothelial cells (EC). CM-EVs were studied using electron microscopy, nanoparticle tracking analysis (NTA), western blotting and proteomic analysis. Results showed that EVs had a strong preference to be internalized by EC over fibroblasts, suggesting an active exosome-based communication mechanism between CM and EC in the heart. In Matrigel tube-formation assays, Hx CM-EVs were inferior to Nx CM-EVs in angiogenesis. By contrast, in a wound-healing assay, wound closure was faster in fibroblasts treated with Hx CM-EVs than with Nx CM-EVs, supporting a pro-fibrotic effect of Hx CM-EVs. Overall, these observations were consistent with the different protein cargoes detected by proteomic analysis under Nx and Hx conditions and the biological pathways identified. The paracrine crosstalk between CM-EVs, Fb, and EC in different physiological conditions could account for the contribution of CM-EVs to cardiac remodeling after an ischemic insult.

10.
J Tissue Eng Regen Med ; 12(2): e983-e994, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111928

RESUMO

Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-ε-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Implantation of PHB scaffolds in healthy rats polarized macrophages to an M2-type that promoted constructive in vivo remodelling. Moreover, implantation of DE-PHB composites in a NOD/SCID mouse xenograft model resulted in engraftment accompanied by an increase in angiogenesis that favoured the survival of the human graft. Thus, PHB scaffolds are an attractive substrate for further exploration in skin reconstruction procedures, probably due in part to their greater angiogenic and M2 macrophage polarization properties. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Polaridade Celular , Hidroxibutiratos/farmacologia , Macrófagos/citologia , Neovascularização Fisiológica , Pele Artificial , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Derme/citologia , Derme/ultraestrutura , Epiderme/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros/química , Proibitinas , Ratos Wistar , Transplante de Pele
11.
Stem Cell Res Ther ; 8(1): 208, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962641

RESUMO

BACKGROUND: Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. METHODS: Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). RESULTS: While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. CONCLUSIONS: Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK cell lysis and, hence, their potential in vivo lifespan. Our results further support the use of HIF-1 alpha-expressing dental MSCs for cell therapy in tissue injury and immune disorders.


Assuntos
Polpa Dentária/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/citologia
12.
Stem Cells Dev ; 26(13): 973-985, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28520516

RESUMO

Mesenchymal stem cells (MSCs) are effective in treating several pathologies. We and others have demonstrated that hypoxia or hypoxia-inducible factor 1 alpha (HIF-1α) stabilization improves several MSC functions, including cell adhesion, migration, and proliferation, thereby increasing their therapeutic potential. To further explore the mechanisms induced by HIF-1α in MSCs, we studied its relationship with Notch signaling and observed that overexpression of HIF-1α in MSCs increased protein levels of the Notch ligands Jagged 1-2 and Delta-like (Dll)1, Dll3, and Dll4 and potentiated Notch signaling only when this pathway was activated. Crosstalk between HIF and Notch resulted in Notch-dependent migration and spreading of MSCs, which was abolished by γ-secretase inhibition. However, the HIF-1-induced increase in MSC proliferation was independent of Notch signaling. The ubiquitin family member, small ubiquitin-like modifier (SUMO), has important functions in many cellular processes and increased SUMO1 protein levels have been reported in hypoxia. To investigate the potential involvement of SUMOylation in HIF/Notch crosstalk, we measured general SUMOylation levels and observed increased SUMOylation in HIF-1-expressing MSCs. Moreover, proliferation and migration of MSCs were reduced in the presence of a SUMOylation inhibitor, and this effect was particularly robust in HIF-MSCs. Immunoprecipitation studies demonstrated SUMOylation of the intracellular domain of Notch1 (N1ICD) in HIF-1-expressing MSCs, which contributed to Notch pathway activation and resulted in increased levels of N1ICD nuclear translocation as assessed by subcellular fractionation. SUMOylation of N1ICD was also observed in HEK293T cells with stabilized HIF-1α expression, suggesting that this is a common mechanism in eukaryotic cells. In summary, we describe, for the first time, SUMOylation of N1ICD, which is potentiated by HIF signaling. These phenomena could be relevant for the therapeutic effects of MSCs in hypoxia or under conditions of HIF stabilization.


Assuntos
Proliferação de Células/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Mesenquimais/metabolismo , Receptor Notch1/genética , Sumoilação/genética , Secretases da Proteína Precursora do Amiloide/genética , Hipóxia Celular/genética , Movimento Celular/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ligação Proteica , Transdução de Sinais , Ubiquitina/genética
13.
Stem Cells ; 35(7): 1747-1759, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28376567

RESUMO

Insufficient vessel growth associated with ischemia remains an unresolved issue in vascular medicine. Mesenchymal stem cells (MSCs) have been shown to promote angiogenesis via a mechanism that is potentiated by hypoxia. Overexpression of hypoxia inducible factor (HIF)-1α in MSCs improves their therapeutic potential by inducing angiogenesis in transplanted tissues. Here, we studied the contribution of exosomes released by HIF-1α-overexpressing donor MSCs (HIF-MSC) to angiogenesis by endothelial cells. Exosome secretion was enhanced in HIF-MSC. Omics analysis of miRNAs and proteins incorporated into exosomes pointed to the Notch pathway as a candidate mediator of exosome communication. Interestingly, we found that Jagged1 was the sole Notch ligand packaged into MSC exosomes and was more abundant in HIF-MSC than in MSC controls. The addition of Jagged1-containing exosomes from MSC and HIF-MSC cultures to endothelial cells triggered transcriptional changes in Notch target genes and induced angiogenesis in an in vitro model of capillary-like tube formation, and both processes were stimulated by HIF-1α. Finally, subcutaneous injection of Jagged 1-containing exosomes from MSC and HIF-MSC cultures in the Matrigel plug assay induced angiogenesis in vivo, which was more robust when they were derived from HIF-MSC cultures. All Jagged1-mediated effects could be blocked by prior incubation of exosomes with an anti-Jagged 1 antibody. All together, the results indicate that exosomes derived from MSCs stably overexpressing HIF-1α have an increased angiogenic capacity in part via an increase in the packaging of Jagged1, which could have potential applications for the treatment of ischemia-related disease. Stem Cells 2017;35:1747-1759.


Assuntos
Exossomos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Jagged-1/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Animais , Anticorpos Neutralizantes/farmacologia , Hipóxia Celular , Técnicas de Cocultura , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Exossomos/química , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Jagged-1/antagonistas & inibidores , Proteína Jagged-1/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Cultura Primária de Células , Tetraspanina 30/genética , Tetraspanina 30/metabolismo , Transdução Genética , Transplante Heterólogo , Proteína Vermelha Fluorescente
14.
PLoS One ; 10(9): e0138849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393803

RESUMO

Cardiomyocytes (CMs) and endothelial cells (ECs) have an intimate anatomical relationship that is essential for maintaining normal development and function in the heart. Little is known about the mechanisms that regulate cardiac and endothelial crosstalk, particularly in situations of acute stress when local active processes are required to regulate endothelial function. We examined whether CM-derived exosomes could modulate endothelial function. Under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes increase their secretion of exosomes. CM-derived exosomes are loaded with a broad repertoire of miRNA and proteins in a glucose availability-dependent manner. Gene Ontology (GO) analysis of exosome cargo molecules identified an enrichment of biological process that could alter EC activity. We observed that addition of CM-derived exosomes to ECs induced changes in transcriptional activity of pro-angiogenic genes. Finally, we demonstrated that incubation of H9C2-derived exosomes with ECs induced proliferation and angiogenesis in the latter. Thus, exosome-mediated communication between CM and EC establishes a functional relationship that could have potential implications for the induction of local neovascularization during acute situations such as cardiac injury.


Assuntos
Endotélio Vascular/metabolismo , Exossomos/metabolismo , Glucose/administração & dosagem , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Animais , Proliferação de Células , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Ratos , Ratos Wistar , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...