Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 573, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772442

RESUMO

BACKGROUND: Vector-borne pathogens must survive and replicate in the hostile environment of an insect's midgut before successful dissemination. Midgut microbiota interfere with pathogen infection by activating the basal immunity of the mosquito and by synthesizing pathogen-inhibitory metabolites. METHODS: The goal of this study was to assess the influence of Zika virus (ZIKV) infection and increased temperature on Aedes albopictus midgut microbiota. Aedes albopictus were reared at diurnal temperatures of day 28 °C/night 24 °C (L) or day 30 °C/night 26 °C (M). The mosquitoes were given infectious blood meals with 2.0 × 108 PFU/ml ZIKV, and 16S rRNA sequencing was performed on midguts at 7 days post-infectious blood meal exposure. RESULTS: Our findings demonstrate that Elizabethkingia anophelis albopictus was associated with Ae. albopictus midguts exposed to ZIKV infectious blood meal. We observed a negative correlation between ZIKV and E. anophelis albopictus in the midguts of Ae. albopictus. Supplemental feeding of Ae. albopictus with E. anophelis aegypti and ZIKV resulted in reduced ZIKV infection rates. Reduced viral loads were detected in Vero cells that were sequentially infected with E. anophelis aegypti and ZIKV, dengue virus (DENV), or chikungunya virus (CHIKV). CONCLUSIONS: Our findings demonstrate the influence of ZIKV infection and temperature on the Ae. albopictus microbiome along with a negative correlation between ZIKV and E. anophelis albopictus. Our results have important implications for controlling vector-borne pathogens.


Assuntos
Aedes/microbiologia , Aedes/virologia , Flavobacteriaceae/fisiologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Zika virus/fisiologia , Animais , Flavobacteriaceae/genética , Humanos , Temperatura , Zika virus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
2.
Front Microbiol ; 11: 559035, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133033

RESUMO

Rapid and significant range expansion of both the Zika virus (ZIKV) and its Aedes vector species has resulted in the declaration of ZIKV as a global health threat. Successful transmission of ZIKV by its vector requires a complex series of interactions between these entities including the establishment, replication and dissemination of the virus within the mosquito. The metabolic conditions within the mosquito tissues play a critical role in mediating the crucial processes of viral infection and replication and represent targets for prevention of virus transmission. In this study, we carried out a comprehensive metabolomic phenotyping of ZIKV infected and uninfected Ae. albopictus by untargeted analysis of primary metabolites, lipids and biogenic amines. We performed a comparative metabolomic study of infection state with the aim of understanding the biochemical changes resulting from the interaction between the ZIKV and its vector. We have demonstrated that ZIKV infection results in changes to the cellular metabolic environment including a significant enrichment of inosine and pseudo-uridine (Ψ) levels which may be associated with RNA editing activity. In addition, infected mosquitoes demonstrate a hypoglycemic phenotype and show significant increases in the abundance of metabolites such as prostaglandin H2, leukotriene D4 and protoporphyrinogen IX which are associated with antiviral activity. These provide a basis for understanding the biochemical response to ZIKV infection and pathology in the vector. Future mechanistic studies targeting these ZIKV infection responsive metabolites and their associated biosynthetic pathways can provide inroads to identification of mosquito antiviral responses with infection blocking potential.

4.
PLoS Negl Trop Dis ; 13(8): e0007340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31369548

RESUMO

Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.


Assuntos
Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Insetos Vetores/microbiologia , Spiroplasma/patogenicidade , Moscas Tsé-Tsé/microbiologia , Animais , Coinfecção , DNA Ribossômico/genética , Feminino , Insetos Vetores/parasitologia , Masculino , Prevalência , Spiroplasma/genética , Spiroplasma/fisiologia , Simbiose , Trypanosoma , Moscas Tsé-Tsé/parasitologia , Uganda , Wolbachia
5.
BMC Genomics ; 17(1): 769, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27716062

RESUMO

BACKGROUND: The advent of genotyping by Next Generation Sequencing has enabled rapid discovery of thousands of single nucleotide polymorphism (SNP) markers and high throughput genotyping of large populations at an affordable cost. Genotyping by sequencing (GBS), a reduced representation library sequencing method, allows highly multiplexed sequencing of genomic subsets. This method has limitations for small organisms with low amounts of genomic DNA, such as the bluetongue virus (BTV) vectors, Culicoides midges. RESULTS: This study employed the GBS method to isolate SNP markers de novo from whole genome amplified Culicoides brevitarsis genomic DNA. The individuals were collected from regions representing two different Australian patterns of BTV strain distribution: the Northern Territory (NT) and the east coast. We isolated 8145 SNPs using GBS. Phylogenetic analysis conducted using the filtered 3263 SNPs revealed the presence of a distinct C. brevitarsis sub-population in the NT and this was confirmed by analysis of mitochondrial DNA. Two loci showed a very strong signal for selection and were unique to the NT population. Bayesian analysis with STRUCTURE indicated a possible two-population cluster. CONCLUSIONS: The results suggest that genotyping vectors with high density markers in combination with biological and environmental data is useful. However, more extensive sampling over a wider spatial and temporal range is needed. The presence of sub-structure in populations and loci under natural selection indicates the need for further investigation of the role of vectors in shaping the two Australian systems of BTV transmission. The described workflow is transferable to genotyping of small, non-model organisms, including arthropod vectors of pathogens of economic and medical importance.


Assuntos
Ceratopogonidae/genética , Genética Populacional , Genoma de Inseto , Genômica , Genótipo , Animais , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/genética , Biblioteca Gênica , Genes Mitocondriais , Genômica/métodos , Haplótipos , Northern Territory , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética
6.
Parasit Vectors ; 8: 660, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26704134

RESUMO

BACKGROUND: Culicoides imicola Kieffer, 1913 is the main vector of bluetongue virus (BTV) and African horse sickness virus (AHSV) in Sub-Saharan Africa. Understanding the population genetic structure of this midge and the nature of barriers to gene flow will lead to a deeper understanding of bluetongue epidemiology and more effective vector control in this region. METHODS: A panel of 12 DNA microsatellite markers isolated de novo and mitochondrial DNA were utilized in a study of C. imicola populations from Africa and an outlier population from the Balearic Islands. The DNA microsatellite markers and mitochondrial DNA were also used to examine a population of closely related C. bolitinos Meiswinkel midges. RESULTS: The microsatellite data suggest gene flow between Kenya and south-west Indian Ocean Islands exist while a restricted gene flow between Kenya and South Africa C. imicola populations occurs. Genetic distance correlated with geographic distance by Mantel test. The mitochondrial DNA analysis results imply that the C. imicola populations from Kenya and south-west Indian Ocean Islands (Madagascar and Mauritius) shared haplotypes while C. imicola population from South Africa possessed private haplotypes and the highest nucleotide diversity among the African populations. The Bayesian skyline plot suggested a population growth. CONCLUSIONS: The gene flow demonstrated by this study indicates a potential risk of introduction of new BTV serotypes by wind-borne infected Culicoides into the Islands. Genetic similarity between Mauritius and South Africa may be due to translocation as a result of human-induced activities; this could impact negatively on the livestock industry. The microsatellite markers isolated in this study may be utilised to study C. bolitinos, an important vector of BTV and AHSV in Africa and identify sources of future incursions.


Assuntos
Ceratopogonidae/classificação , Ceratopogonidae/genética , África Oriental , Animais , Ceratopogonidae/crescimento & desenvolvimento , DNA Mitocondrial/química , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , Haplótipos , Insetos Vetores/classificação , Insetos Vetores/genética , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA , África do Sul
7.
Vet Res ; 46: 108, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26408175

RESUMO

Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes.


Assuntos
Ceratopogonidae/genética , DNA/genética , Variação Genética , Genética Populacional/métodos , Insetos Vetores/genética , Repetições de Microssatélites , Animais , Austrália , Vírus Bluetongue/fisiologia , Papua Nova Guiné , Timor-Leste
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...