Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823918

RESUMO

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Assuntos
Materiais Biocompatíveis , Condrócitos , Dissulfetos , Ácido Hialurônico , Hidrogéis , Reologia , Engenharia Tecidual , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/síntese química , Dissulfetos/química , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio
2.
Biomaterials ; 309: 122629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797120

RESUMO

Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.


Assuntos
Materiais Biocompatíveis , Doenças do Sistema Nervoso Central , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Humanos , Animais , Materiais Biocompatíveis/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Hidrogéis/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38431540

RESUMO

Youth with a chronic medical condition (CMC) are often affected by comorbid mental disorders. Resilience-strengthening interventions can protect youth's mental health, yet evidence-based programs remain scarce. To address this lack, this study aimed to evaluate the feasibility of a dual approach combining app-based resilience training and cognitive behavioral group coaching. Fifty-one youths with CMC treated at a German university children's hospital aged 12-16 years were recruited. They were randomly assigned to a combined app game and coaching intervention or sole app gameplay. At pre-, post-intervention, and at a 2-month follow-up resilience, automatic negative thoughts and an app and coaching evaluation were assessed. Feasibility was defined as a recruitment rate of 70%, an 85% adherence rate for the REThink game, and 70% participation in both coaching sessions. Feasibility criteria were reached for coaching participation but not for recruitment or app adherence. While both the REThink game app and coaching intervention had high acceptance rates among youth with CMC, participants receiving additional coaching sessions showed higher satisfaction and adherence rates. Participants preferred remote to in-person meetings. The findings support a combination of a gamification app approach with online group coaching. Group coaching can improve adherence while online options increase accessibility. Future research should focus on testing in diverse participant samples, language, and age-adapted updates of the REThink game app. These findings provide guidance for increasing adherence in future intervention studies in youth with CMC cohorts.

4.
Biomimetics (Basel) ; 9(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38534825

RESUMO

Our aim was to investigate axonal outgrowth from different tissue models on soft biomaterials based on hyaluronic acid (HA). We hypothesized that HA-based hydrogels differentially promote axonal outgrowth from different neural tissues. Spinal cord sliced cultures (SCSCs) and dorsal root ganglion cultures (DRGCs) were maintained on a collagen gel, a physically crosslinked HA-based hydrogel (Healon 5®) and a novel chemically crosslinked HA-based hydrogel, with or without the presence of neurotrophic factors (NF). Time-lapse microscopy was performed after two, five and eight days, where axonal outgrowth was assessed by automated image analysis. Neuroprotection was investigated by PCR. Outgrowth was observed in all groups; however, in the collagen group, it was scarce. At the middle timepoint, outgrowth from SCSCs was superior in both HA-based groups compared to collagen, regardless of the presence of NF. In DRGCs, the outgrowth in Healon 5® with NF was significantly higher compared to the rest of the groups. PCR revealed upregulation of NeuN gene expression in the HA-based groups compared to controls after excitotoxic injury. The differences in neurite outgrowth from the two different tissue models suggest that axons differentially respond to the two types of biomaterials.

5.
Clin Oral Investig ; 27(12): 7799-7807, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919552

RESUMO

OBJECTIVE: The aim of this in vitro study was to evaluate the effect of an oxide nanocoating to prevent colour degradation of maxillofacial silicone elastomers following accelerated ageing. MATERIAL AND METHODS: Specimens (N = 40) of specified dimensions were fabricated in Factor II room temperature vulcanizing (RTV) silicone and processed according to the manufacturer's instructions. Two groups were classified with 20 specimens each. Specimens in the first group were coated with titanium dioxide (TiO2) by atomic layer deposition technology. The colour stability test was conducted with a UV-VIS spectrometer (Schimadzu) for both titanium dioxide nanocoated and uncoated specimen groups after subjecting them to accelerated ageing. It was analysed using the CIE L*a*b method. RESULTS: The average colour change was highest for uncoated specimens (2.868), and the average colour change for titanium dioxide-coated specimens was significantly low (1.774). The average colour change of uncoated specimens (2.868) was close to the acceptable threshold value (3), and that of coated specimens (1.774) was far below the acceptable threshold (3). CONCLUSIONS: The colour change that occurred in titanium dioxide nanocoated specimens following accelerated ageing was significantly lower than that in the uncoated group, showing that the TiO2 nanocoating was effective in reducing the colour degradation of silicone elastomers. CLINICAL RELEVANCE: Maxillofacial prostheses fabricated from silicone elastomers go through undesirable colour degradation over time. The development of a scientific technique that retards the colour deterioration of silicone prostheses would be of great clinical significance.


Assuntos
Elastômeros de Silicone , Cor , Temperatura , Teste de Materiais
6.
Mater Today Bio ; 22: 100768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37600348

RESUMO

Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells.

7.
Biomater Adv ; 147: 213331, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773382

RESUMO

Mesenchymal stem cells (MSCs) therapy is a promising approach for treating inflammatory diseases due to their immunosuppressive and tissue repair characteristics. However, allogenic transplantation of MSCs induces thrombotic complications in some patients which limits its potential for clinical translation. To address this challenge, we have exploited the bioactivity of heparin, a well-known anticoagulant and immunosuppressive polysaccharide that is widely used in clinics. We have developed a smart layer-by-layer (LbL) coating strategy using gelatin and heparin polymers exploiting their overall positive and negative charges that enabled efficient complexation with the MSCs' glycocalyx. The stable coating of MSCs suppressed complement attack and mitigated thrombotic activation as demonstrated in human whole blood. Gratifyingly, the MSC coating retained its immunosuppressive properties and differentiation potential when exposed to inflammatory conditions and differentiation factors. We believe the simple coating procedure of MSCs will increase allogenic tolerance and circumvent the major challenge of MSCs transplantation.


Assuntos
Biomimética , Células-Tronco Mesenquimais , Humanos , Polieletrólitos , Heparina , Diferenciação Celular , Imunossupressores
8.
Biomater Sci ; 10(22): 6399-6412, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36214100

RESUMO

Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.


Assuntos
Hidrogéis , Nanoestruturas , Hidrogéis/química , Ácido Hialurônico/química , Materiais Biocompatíveis/química , Matriz Extracelular
10.
Acta Biomater ; 142: 36-48, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085799

RESUMO

Innovative scaffold designs that modulate the local inflammatory microenvironment through favorable macrophage polarization and suppressing oxidative stress are needed for successful clinical translation of regenerative cell therapies and graft integration. We herein report derivation of a hydrazone-crosslinked gallol functionalized hyaluronic acid (HA-GA)-based hydrogel that displayed outstanding viscoelastic properties and immunomodulatory characteristics. Grafting of 6% gallol (GA) to a HA-backbone formed an interpenetrative network by promoting an additional crosslink between the gallol groups in addition to hydrazone crosslinking. This significantly enhanced the mechanical stability and displayed shear-thinning/self-healing characteristics, facilitated tissue adhesive properties to porcine tissue and also displayed radical scavenging properties, protecting encapsulated fibroblasts from peroxide challenge. The THP-1 human macrophage cell line or primary bone-marrow-derived murine macrophages cultured within HA-GA gels displayed selective polarization to a predominantly anti-inflammatory phenotype by upregulating IL4ra, IL-10, TGF-ß, and TGF-ßR1 expression when compared with HA-HA gels. Conversely, culturing of pro-inflammatory activated primary murine macrophages in HA-GA gels resulted in a significant reduction of pro-inflammatory TNF-α, IL-1ß, SOCS3 and IL-6 marker expression, and upregulated expression of anti-inflammatory cytokines including TGF-ß. Finally, when the gels were implanted subcutaneously into healthy mice, we observed infiltration of pro-inflammatory myeloid cells in HA-HA gels, while immunosuppressive phenotypes were observed within the HA-GA gels. Taken together these data suggest that HA-GA gels are an ideal injectable scaffold for viable immunotherapeutic interventions. STATEMENT OF SIGNIFICANCE: Host immune response against the implanted scaffolds that are designed to deliver stem cells or therapeutic proteins in vivo significantly limits the functional outcome. For this reason, we have designed immunomodulatory injectable scaffolds that can favorably polarize the recruited macrophages and impart antioxidant properties to suppress oxidative stress. Specifically, we have tailored a hyaluronic acid-based extracellular matrix mimetic injectable scaffold that is grafted with immunomodulatory gallol moiety. Gallol functionalization of hydrogel not only enhanced the mechanical properties of the scaffold by forming an interpenetrating network but also induced antioxidant properties, tissue adhesive properties, and polarized primary murine macrophages to immunosuppressive phenotype. We believe such immunoresponsive implants will pave the way for developing the next-generation of biomaterials for regenerative medicine applications.


Assuntos
Hidrogéis , Adesivos Teciduais , Animais , Antioxidantes , Ácido Hialurônico/farmacologia , Hidrazonas , Hidrogéis/farmacologia , Macrófagos , Camundongos , Fenótipo , Suínos , Fator de Crescimento Transformador beta
11.
Acta Biomater ; 140: 314-323, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902615

RESUMO

Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology. STATEMENT OF SIGNIFICANCE: Developing a brain mimetic 3D scaffold that supports neuronal growth could potentially be useful to study neurobiology, disease pathology, and disease modeling. However, culturing human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (ESCs) derived neurons in a 3D matrix is extremely challenging as neurons are very sensitive cells and require tailored composition, viscoelasticity, and chemical cues. This article identified the key chemical cues necessary for designing neuronal matrix that trap the cell-produced ECM and neurotrophic factors and remodel the matrix and supports neurite outgrowth. The tailored injectable scaffold possesses self-healing/shear-thinning property which is useful to design injectable gels for regenerative medicine and disease modeling that provides biomimetic neurophysiology.


Assuntos
Biomimética , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo , Matriz Extracelular/metabolismo , Humanos , Neurônios , Alicerces Teciduais/química
12.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439185

RESUMO

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

13.
iScience ; 24(6): 102535, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34124613

RESUMO

High-density lipoproteins (HDLs) are a group of different subpopulations of sialylated particles that have an essential role in the reverse cholesterol transport (RCT) pathway. Importantly, changes in the protein and lipid composition of HDLs may lead to the formation of particles with reduced atheroprotective properties. Here, we show that Streptococcus pneumoniae pneumolysin (PLY) and neuraminidase A (NanA) impair HDL function by causing chemical and structural modifications of HDLs. The proteomic, lipidomic, cellular, and biochemical analysis revealed that PLY and NanA induce significant changes in sialic acid, protein, and lipid compositions of HDL. The modified HDL particles have reduced cholesterol acceptor potential from activated macrophages, elevated levels of malondialdehyde adducts, and show significantly increased complement activating capacity. These results suggest that accumulation of these modified HDL particles in the arterial intima may present a trigger for complement activation, inflammatory response, and thereby promote atherogenic disease progression.

14.
Biomater Sci ; 9(11): 3939-3944, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34002185

RESUMO

There is an unmet need to develop strategies that allow site-specific delivery of short interfering RNA (siRNA) without any associated toxicity. To address this challenge, we have developed a novel siRNA delivery platform using chemically modified pluronic F108 as an amphiphilic polymer with a releasable bioactive disulfide functionality. The micelles exhibited thermoresponsive properties and showed a hydrodynamic size of ∼291 nm in DLS and ∼200-250 nm in SEM at 37 °C. The grafting of free disulfide pyridyl groups enhanced the transfection efficiency and was successfully demonstrated in human colon carcinoma (HCT116; 88%) and glioma cell lines (U87; 90%), non-cancerous human dermal fibroblast (HDF; 90%) cells as well as in mouse embryonic stem (mES; 54%) cells. To demonstrate the versatility of our modular nanocarrier design, we conjugated the MDGI receptor targeting COOP peptide on the particle surface that allowed the targeted delivery of the cargo molecules to human patent-derived primary BT-13 gliospheres. Transfection experiments with this design resulted in ∼65% silencing of STAT3 mRNA in BT-13 gliospheres, while only ∼20% of gene silencing was observed in the absence of the peptide. We believe that our delivery method solves current problems related to the targeted delivery of RNAi drugs for potential in vivo applications.


Assuntos
Micelas , Poloxâmero , Animais , Linhagem Celular Tumoral , Camundongos , Oxirredução , RNA Interferente Pequeno/metabolismo , Transfecção
15.
Biomacromolecules ; 22(5): 1980-1989, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33813822

RESUMO

Mesenchymal stem/stromal cells (MSCs) evoke great excitement for treating different human diseases due to their ability to home inflamed tissues, suppress inflammation, and promote tissue regeneration. Despite great promises, clinical trial results are disappointing as allotransplantation of MSCs trigger thrombotic activity and are damaged by the complement system, compromising their survival and function. To overcome this, a new strategy is presented by the silencing of tissue factor (TF), a transmembrane protein that mediates procoagulant activity. Novel Pluronic-based micelles are designed with the pendant pyridyl disulfide group, which are used to conjugate TF-targeting siRNA by the thiol-exchange reaction. This nanocarrier design effectively delivered the payload to MSCs resulting in ∼72% TF knockdown (KD) without significant cytotoxicity. Hematological evaluation of MSCs and TF-KD MSCs in an ex vivo human whole blood model revealed a significant reduction in an instant-blood-mediated-inflammatory reaction as evidenced by reduced platelet aggregation (93% of free platelets in the TF-KD group, compared to 22% in untreated bone marrow-derived MSCs) and thrombin-antithrombin complex formation. Effective TF silencing induced higher MSC differentiation in osteogenic and adipogenic media and showed stronger paracrine suppression of proinflammatory cytokines in macrophages and higher stimulation in the presence of endotoxins. Thus, TF silencing can produce functional cells with higher fidelity, efficacy, and functions.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Humanos , Micelas , Comunicação Parácrina , Poloxâmero , Tromboplastina/genética
16.
Adv Healthc Mater ; 10(6): e2002058, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533187

RESUMO

Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.


Assuntos
Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Diferenciação Celular , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Oxigênio
17.
Cell Mol Bioeng ; 14(1): 121-130, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33633814

RESUMO

INTRODUCTION: Human mesenchymal stem cells (hMSCs) have a great clinical potential for tissue regeneration purposes due to its multilineage capability. Previous studies have reported that a single addition of 5-azacytidine (5-AzaC) causes the differentiation of hMSCs towards a myocardial lineage. The aim of this work was to evaluate the effect of 5-AzaC addition frequency on hMSCs priming (i.e., indicating an early genetic differentiation) using two culture environments. METHODS: hMSCs were supplemented with 5-AzaC while cultured in well plates and in microfluidic chips. The impact of 5-AzaC concentration (10 and 20 µM) and addition frequency (once, daily or continuously), as well as of culture period (2 or 5 days) on the genetic upregulation of PPARγ (adipocytes), PAX3 (myoblasts), SOX9 (chondrocytes) and RUNX2 (osteoblasts) was evaluated. RESULTS: Daily delivering 5-AzaC caused a higher upregulation of PPARγ, SOX9 and RUNX2 in comparison to a single dose delivery, both under static well plates and dynamic microfluidic cultures. A particularly high gene expression of PPARγ (tenfold-change) could indicate priming of hMSCs towards adipocytes. CONCLUSIONS: Both macro- and microscale cultures provided results with similar trends, where addition frequency of 5-AzaC was a crucial factor to upregulate several genes. Microfluidics technology was proven to be a suitable platform for the continuous delivery of a drug and could be used for screening purposes in tissue engineering research.

18.
Carbohydr Polym ; 254: 117291, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357860

RESUMO

Anti-inflammatory drugs such as dexamethasone (DEX) are commonly administered to cancer patients along with anticancer drugs, however, the effect of DEX on human cancers is poorly understood. In this article, we have tailored self-assembled nanoparticles derived from hyaluronic acid (HA) wherein, anti-inflammatory DEX was used as a hydrophobic moiety for inducing amphiphilicity. The HA-DEX micelles were subsequently loaded with chemotherapeutic agent, doxorubicin (DOX) (HA-DEX-DOX) and was utilized to deliver drug cargo to human cancer cells expressing different levels of CD44 receptors. We found that DEX suppressed the cytotoxicity of DOX in HCT116, while it synergistically enhanced cytotoxicity in MCF-7 cells. When we tested DOX and HA-DEX-DOX in an ex-vivo human whole blood, we found activation of complement and the coagulation cascade in one group of donors. Encapsulation of DOX within the nanoparticle core eliminated such deleterious side-effects. The HA-DEX-DOX also polarized bone-marrow-derived anti-inflammatory M2 macrophages, to pro-inflammatory M1 phenotype with the upregulation of the cytokines TNF-α, iNOS and IL-1ß.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Polaridade Celular/efeitos dos fármacos , Dexametasona/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Ácido Hialurônico/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Combinação de Medicamentos , Liberação Controlada de Fármacos , Células HCT116 , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Ácido Hialurônico/farmacologia , Inflamação/tratamento farmacológico , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Fenótipo , Agregação Plaquetária/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Nat Mater ; 20(2): 250-259, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32895507

RESUMO

Organoids can shed light on the dynamic interplay between complex tissues and rare cell types within a controlled microenvironment. Here, we develop gut organoid cocultures with type-1 innate lymphoid cells (ILC1) to dissect the impact of their accumulation in inflamed intestines. We demonstrate that murine and human ILC1 secrete transforming growth factor ß1, driving expansion of CD44v6+ epithelial crypts. ILC1 additionally express MMP9 and drive gene signatures indicative of extracellular matrix remodelling. We therefore encapsulated human epithelial-mesenchymal intestinal organoids in MMP-sensitive, synthetic hydrogels designed to form efficient networks at low polymer concentrations. Harnessing this defined system, we demonstrate that ILC1 drive matrix softening and stiffening, which we suggest occurs through balanced matrix degradation and deposition. Our platform enabled us to elucidate previously undescribed interactions between ILC1 and their microenvironment, which suggest that they may exacerbate fibrosis and tumour growth when enriched in inflamed patient tissues.


Assuntos
Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Organoides/metabolismo , Animais , Feminino , Humanos , Mucosa Intestinal/citologia , Linfócitos/citologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Organoides/citologia , Fator de Crescimento Transformador beta1/metabolismo
20.
Biomater Sci ; 8(1): 302-312, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31701967

RESUMO

Statins are currently the most prescribed hypercholesterolemia-lowering drugs worldwide, with estimated usage approaching one-sixth of the population. However, statins are known to cause pleiotropic skeletal myopathies in 1.5% to 10% of patients and the mechanisms by which statins induce this response, are not fully understood. In this study, a 3D collagen-based tissue-engineered skeletal muscle construct is utilised as a screening platform to test the efficacy and toxicity of a new delivery system. A hyaluronic acid derived nanoparticle loaded with simvastatin (HA-SIM-NPs) is designed and the effect of free simvastatin and HA-SIM-NPs on cellular, molecular and tissue response is investigated. Morphological ablation of myotubes and lack of de novo myotube formation (regeneration) was evident at the highest concentrations (333.33 µM), independent of delivery vehicle (SIM or HA-SIM-NP). A dose-dependent disruption of the cytoskeleton, reductions in metabolic activity and tissue engineered (TE) construct tissue relaxation was evident in the free drug condition (SIM, 3.33 µM and 33.33 nM). However, most of these changes were ameliorated when SIM was delivered via HA-SIM-NPs. Significantly, homogeneous expressions of MMP2, MMP9, and myogenin in HA-SIM-NPs outlined enhanced regenerative responses compared to SIM. Together, these results outline statin delivery via HA-SIM-NP as an effective delivery mechanism to inhibit deleterious myotoxic side-effects.


Assuntos
Ácido Hialurônico/química , Músculo Esquelético/citologia , Osteogênese/efeitos dos fármacos , Sinvastatina/efeitos adversos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Músculo Esquelético/química , Músculo Esquelético/efeitos dos fármacos , Miogenina/genética , Miotoxicidade , Nanopartículas , Sinvastatina/química , Sinvastatina/farmacologia , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...