Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(9): e1010450, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054228

RESUMO

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5-3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Aminoácidos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/química , Epitopos/genética , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Humanos , Solventes
2.
Cell Host Microbe ; 30(6): 880-886.e4, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436444

RESUMO

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização
3.
Cell Rep Med ; 3(3): 100535, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35474744

RESUMO

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.


Assuntos
COVID-19 , Vacinas Virais , Ad26COVS1 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , SARS-CoV-2/genética
4.
Front Immunol ; 12: 733958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566999

RESUMO

The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.


Assuntos
Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Facilitadores , Anticorpos Amplamente Neutralizantes/genética , Engenharia Genética , Anticorpos Anti-HIV/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Testes de Neutralização , Fagocitose , Ligação Proteica , Receptores de IgG/metabolismo , Células THP-1
6.
bioRxiv ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33688657

RESUMO

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

7.
Nat Med ; 27(4): 622-625, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33654292

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.


Assuntos
COVID-19/imunologia , Evasão da Resposta Imune , Testes de Neutralização , SARS-CoV-2/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Doadores de Sangue , Vacinas contra COVID-19/imunologia , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia
8.
bioRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501446

RESUMO

SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.

9.
Cell Rep ; 33(8): 108430, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238131

RESUMO

Neutralizing antibodies (nAbs) to highly variable viral pathogens show remarkable diversification during infection, resulting in an "arms race" between virus and host. Studies of nAb lineages have shown how somatic hypermutation (SHM) in immunoglobulin (Ig)-variable regions enables maturing antibodies to neutralize emerging viral escape variants. However, the Ig-constant region (which determines isotype) can also influence epitope recognition. Here, we use longitudinal deep sequencing of an HIV-directed nAb lineage, CAP88-CH06, and identify several co-circulating isotypes (IgG3, IgG1, IgA1, IgG2, and IgA2), some of which share identical variable regions. First, we show that IgG3 and IgA1 isotypes are better able to neutralize longitudinal autologous viruses and epitope mutants than can IgG1. Second, detrimental class-switch recombination (CSR) events that resulted in reduced neutralization can be rescued by further CSR, which we term "switch redemption." Thus, CSR represents an additional immunological mechanism to counter viral escape from HIV-specific antibody responses.


Assuntos
HIV-1/imunologia , Switching de Imunoglobulina/imunologia , Testes de Neutralização/métodos , Humanos
10.
Int J Mol Sci ; 16(5): 10242-66, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25955646

RESUMO

The human retinoblastoma binding protein 6 (RBBP6) is implicated in esophageal, lung, hepatocellular and colon cancers. Furthermore, RBBP6 was identified as a strong marker for colon cancer prognosis and as a predisposing factor in familial myeloproliferative neoplasms. Functionally, the mammalian protein interacts with p53 and enhances the activity of Mdm2, the prototypical negative regulator of p53. However, since RBBP6 (known as PACT in mice) exists in multiple isoforms and pact-/- mice exhibit a more severe phenotype than mdm2-/- mutants, it must possess some Mdm2-independent functions. The function of the invertebrate homologue is poorly understood. This is complicated by the absence of the Mdm2 gene in both Drosophila and Caenorhabditis elegans. We have experimentally identified the promoter region of Snama, the Drosophila homologue, analyzed potential transcription factor binding sites and confirmed the existence of an additional isoform. Using band shift and co-immunoprecipitation assays combined with mass spectrometry, we found evidence that this gene may be regulated by, amongst others, DREF, which regulates hundreds of genes related to cell proliferation. The potential transcription factors for Snama fall into distinct functional groups, including anteroposterior embryonic patterning and nucleic acid metabolism. Significantly, previous work in mice shows that pact-/- induces an anteroposterior phenotype in embryos when rescued by simultaneous deletion of p53. Taken together, these observations indicate the significance of RBBP6 proteins in carcinogenesis and in developmental defects.


Assuntos
Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...