Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(4): 446-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339784

RESUMO

Whereas extracellular vesicles (EVs) have been engineered for cargo loading, innovative strategies for it can still be developed. Here, we describe domain 4 (D4), a cholesterol-binding domain derived from perfringolysin O, as a viable candidate for EV cargo loading. D4 and its mutants localized to the plasma membrane and the membranes of different vesicular structures in the cytoplasm, and facilitate the transport of proteins of interest (POIs) into EVs. D4-EVs were internalized by recipient cells analogous to EVs engineered with CD9. Intracellular cargo discharge from D4-EVs was successfully detected with the assistance of vesicular stomatitis virus glycoprotein. This study presents a novel strategy for recruiting POIs into EVs via a lipid-binding domain that ensures content release in recipient cells.


Assuntos
Toxinas Bacterianas , Vesículas Extracelulares , Proteínas Hemolisinas , Vesículas Extracelulares/metabolismo , Membrana Celular , Toxinas Bacterianas/metabolismo , Lipídeos
2.
Cancers (Basel) ; 11(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766201

RESUMO

Due to advancements in nanotechnology, the application of nanosized materials (nanomaterials) in cancer diagnostics and therapeutics has become a leading area in cancer research. The decoration of nanomaterial surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to cancer cells. These ligands can bind to specific receptors on the cell surface and enable nanomaterials to actively target cancer cells. Integrins are one of the cell surface receptors that regulate the communication between cells and their microenvironment. Several integrins are overexpressed in many types of cancer cells and the tumor microvasculature and function in the mediation of various cellular events. Therefore, the surface modification of nanomaterials with integrin-specific ligands not only increases their binding affinity to cancer cells but also enhances the cellular uptake of nanomaterials through the intracellular trafficking of integrins. Moreover, the integrin-specific ligands themselves interfere with cancer migration and invasion by interacting with integrins, and this finding provides a novel direction for new treatment approaches in cancer nanomedicine. This article reviews the integrin-specific ligands that have been used in cancer nanomedicine and provides an overview of the recent progress in cancer diagnostics and therapeutic strategies involving the use of integrin-targeted nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...