Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Am J Clin Exp Urol ; 11(6): 559-577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148930

RESUMO

Lower urinary tract dysfunction (LUTD) encompasses a range of debilitating conditions that affect both sexes and different age groups. Understanding the underlying neurobiological mechanisms contributing to LUTD has emerged as a critical avenue for the development of targeted therapeutic strategies. Brain-derived neurotrophic factor (BDNF), a prominent member of the neurotrophin family, has attracted attention due to its multiple roles in neural development, plasticity, and maintenance. This review examines the intricate interplay between neurobiological factors and LUTD, focusing on the central involvement of BDNF. The review emphasizes the bidirectional relationship between LUTD and BDNF and explores how LUTD-induced neural changes may affect BDNF dynamics and vice versa. Growth factor therapy and the combined administration of controlled release growth factors and stem cells are minimally invasive treatment strategies for neuromuscular injury. Among the many growth factors and cytokines, brain-derived neurotrophic factor (BDNF) plays a prominent role in neuromuscular repair. As an essential neurotrophin, BDNF is involved in the modulation of neuromuscular regeneration through tropomyosin receptor kinase B (TrkB). Increasing BDNF levels facilitates the regeneration of the external urethral sphincter and contributes to the regulation of bladder contraction. Treatments targeting the BDNF pathway and sustained release of BDNF may become novel treatment options for urinary incontinence and other forms of lower urinary tract dysfunction. This review discusses the applications of BDNF and the theoretical basis for its use in the treatment of lower urinary tract dysfunction, including urinary incontinence (UI), overactive bladder (OAB), and benign prostatic hyperplasia (BPH), and in the clinical diagnosis of bladder dysfunction.

2.
Acta Biomater ; 171: 261-272, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742726

RESUMO

A strategy that seeks to combine the biophysical properties of inert encapsulation materials like alginate with the biochemical niche provided by pancreatic extracellular matrix (ECM)-derived biomaterials, could provide a physiomimetic pancreatic microenvironment for maintaining long-term islet viability and function in culture. Herein, we have demonstrated that incorporating human pancreatic decellularized ECM within alginate microcapsules results in a significant increase in Glucose Stimulation Index (GSI) and total insulin secreted by encapsulated human islets, compared to free islets and islets encapsulated in only alginate. ECM supplementation also resulted in long-term (58 days) maintenance of GSI levels, similar to that observed in free islets at the first time point (day 5). At early time points in culture, ECM promoted gene expression changes through ECM- and cell adhesion-mediated pathways, while it demonstrated a mitochondria-protective effect in the long-term. STATEMENT OF SIGNIFICANCE: The islet isolation process can damage the islet extracellular matrix, resulting in loss of viability and function. We have recently developed a detergent-free, DI-water based method for decellularization of human pancreas to produce a potent solubilized ECM. This ECM was added to alginate for microencapsulation of human islets, which resulted in significantly higher stimulation index and total insulin production, compared to only alginate capsules and free islets, over long-term culture. Using ECM to preserve islet health and function can improve transplantation outcomes, as well as provide novel materials and platforms for studying islet biology in microfluidic, organ-on-a-chip, bioreactor and 3D bioprinted systems.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Secreção de Insulina , Pâncreas/metabolismo , Insulina/farmacologia , Matriz Extracelular/metabolismo , Alginatos/farmacologia
3.
Ann Biomed Eng ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436565

RESUMO

Tissue-engineering and cell-based strategies provide an intriguing approach to treat complex conditions such as those of the endocrine system. We have previously developed a cell-based hormone therapy (cHT) to address hormonal insufficiency associated with the loss of ovarian function. To assess how the cHT strategy may achieve its efficacy, we developed a mathematical model to determine if known autocrine, paracrine, and endocrine effects of the native hypothalamus-pituitary-ovary (HPO) axis could explain our previously observed effects in ovariectomized rats following treatment with cHT. Our model suggests that cHT constructs participate in the complex machinery of the HPO axis. We were able to describe the in vivo behaviors of estrogen, progesterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), inhibin, and androgen with good accuracy. A sensitivity analysis indicated that some parameters impact the broader HPO system more than others, but that most changes in model parameters led to proportional changes in the system. We also conducted a predictive analysis on the effect of cHT dose on HPO axis hormones and found that, with the exception of estrogen, the other HPO hormones analyzed reach a saturation level within the physically possible number of constructs.

4.
Ann Biomed Eng ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913086

RESUMO

There is an unrelenting interest in the development of a reliable bioartificial pancreas construct since the first description of this technology of encapsulated islets by Lim and Sun in 1980 because it promised to be a curative treatment for Type 1 Diabetes Mellitus (T1DM). Despite the promise of the concept of encapsulated islets, there are still some challenges that impede the full realization of the clinical potential of the technology. In this review, we will first present the justification for continued research and development of this technology. Next, we will review key barriers that impede progress in this field and discuss strategies that can be used to design a reliable construct capable of effective long-term performance after transplantation in diabetic patients. Finally, we will share our perspectives on areas of additional work for future research and development of the technology.

5.
Ann Biomed Eng ; 50(10): 1177-1186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35804253

RESUMO

Exosomes are enclosed within a single outer membrane and exemplify a specific subtype of secreted vesicles. Exosomes transfer signalling molecules, including microRNAs (miRNAs), messenger RNA (mRNA), fatty acids, proteins, and growth factors, making them a promising therapeutic tool. In routine bioartificial pancreas fabrication, cells are immobilized in polymeric hydrogels lacking attachment capability for cells and other biological cues. In this opinion article, we will discuss the potential role that exosomes and their specific biofactors may play to improve and sustain the function of this bioartificial construct. We will particularly discuss the challenges associated with their isolation and characterization. Since stem cells are an attractive source of exosomes, we will present the advantages of using exosomes in place of stem cells in medical devices including the bioartificial pancreas. We will provide literature evidence of active biofactors in exosomes to support their incorporation in the matrix of encapsulated islets. This will include their potential beneficial effect on hypoxic injury to encapsulated islets. In summary, we propose that the biofactors contained in secreted exosomes have significant potential to enhance the performance of islets encapsulated in polymeric material hydrogels with perm-selective properties to provide immunoisolation for islet transplants as an insulin delivery platform in diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Exossomos , Transplante das Ilhotas Pancreáticas , Alginatos , Diabetes Mellitus Tipo 1/terapia , Humanos , Hidrogéis , Pâncreas
6.
Ann Biomed Eng ; 50(3): 291-302, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35072884

RESUMO

In this research we have used different cytokines and progesterone to enhance the immunomodulatory capacity of placental-derived stem cells (PLSCs) prior to their encapsulation. We assessed the effect of microencapsulation of the cells without (control) or after 3-day treatment with interferon gamma (INFγ), interleukin10 (IL-10), or progesterone (P4). Treated PLSCs demonstrated strong immunosuppressive effects on phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells (PBMNCs). INFγ treatment resulted in the strongest immune inhibition among the treated groups. The treatments enhanced soluble human leukocyte antigen (sHLAG) secretion compared to control. The IL-10-treated group showed the highest effect on HLAG secretion compared to other groups. Alginate encapsulation of PLSCs did not affect cell viability, or sHLAG secretion. Also, after treatment the encapsulated PLSCs inhibited PHA-activated PBMNCs in the same manner as unencapsulated cells. We studied two groups of encapsulated PLSCs, one without perm-selective poly-L-ornithine (PLO)-coating and the other with PLO-coating, and measured levels of sHLAG secreted. We found no difference in sHLAG secretion between both groups. In summary, our data show that immunomodulatory function of the PLSC is not affected by encapsulation. These findings provide good promise for potential use of encapsulated PLSCs for immunomodulation treatment of disease by stem cell therapy.


Assuntos
Arginina/análogos & derivados , Interleucina-2/metabolismo , Leucócitos Mononucleares/metabolismo , Arginina/metabolismo , Proliferação de Células , Feminino , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Gravidez
7.
Exp Biol Med (Maywood) ; 246(24): 2570-2578, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666516

RESUMO

In this minireview, we briefly outline the hallmarks of diabetes, the distinction between type 1 and type 2 diabetes, the global incidence of diabetes, and its associated comorbidities. The main goal of the review is to highlight the great potential of encapsulated pancreatic islet transplantation to provide a cure for type 1 diabetes. Following a short overview of the different approaches to islet encapsulation, we provide a summary of the merits and demerits of each approach of the encapsulation technology. We then discuss various attempts to clinical translation with each model of encapsulation as well as the factors that have mitigated the full clinical realization of the promise of the encapsulation technology, the progress that has been made and the challenges that remain to be overcome. In particular, we pay significant attention to the emerging strategies to overcome these challenges. We believe that these strategies to enhance the performance of the encapsulated islet constructs discussed herein provide good platforms for additional work to achieve successful clinical translation of the encapsulated islet technology.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Humanos
8.
J Surg Res ; 264: 90-98, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33794389

RESUMO

BACKGROUND: The Slit-Robo pathway is a key regulator of angiogenesis and cellular function in experimental models. Slit3 proteins exhibit both proangiogenic and antiangiogenic properties, but the exact mechanism remains unclear. It is theorized that Slit3 may be a potential treatment for vascular diseases and cancer. METHODS: Slit3 labeled with I-125 was encapsulated in microbeads composed of low-viscosity alginate of high-glucuronic acid content, first coated with poly-L-ornithine for various durations and finally with low-viscosity high mannuronic acid. Gamma counter was used to measure microbead encapsulation efficiency and Slit3 release. Markers of angiogenesis were assessed with Boyden chamber, scratch wound, and Matrigel tube formation assays using human umbilical vein and mouse endothelial cells. RESULTS: On incubation of Slit3-loaded microbeads, there was an initial burst phase release of Slit3 for the first 24 h followed by sustained release for 6 to 12 d. Microbead composition determined encapsulation efficiency and rate of release; Slit3 encapsulation was most efficient in microbeads with lower low-viscosity alginate of high-glucuronic acid content concentrations (1.5%) and no poly-L-ornithine coating. Compared with controls (media alone), Slit3 microbeads significantly inhibited in vitro cellular migration, endothelial cell migration for wound closure at 24 and 48 h and endothelial tube formation (P < 0.001, respectively). CONCLUSIONS: Slit3 can be effectively encapsulated and delivered via a controlled release pattern using alginate microbeads. Microbead encapsulation reduces in vitro endothelial tube formation and inhibits cellular migration to impair angiogenesis. Thus, Slit3 microparticles may be explored as a therapeutic option to mitigate tumor proliferation.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteínas de Membrana/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Membrana/farmacocinética , Camundongos , Microesferas , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética
9.
Biomaterials ; 270: 120613, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561625

RESUMO

Interactions between the pancreatic extracellular matrix (ECM) and islet cells are known to regulate multiple aspects of islet physiology, including survival, proliferation, and glucose-stimulated insulin secretion. Recognizing the essential role of ECM in islet survival and function, various engineering approaches have been developed that aim to utilize ECM-based materials to recreate a native-like microenvironment. However, a major impediment to the success of these approaches has been the lack of a robust and comprehensive characterization of the human pancreatic proteome. Herein, by combining mass spectrometry (MS) and multiplex ELISA, we have provided an improved workflow for the in-depth profiling of the proteome, including minor constituents that are generally underrepresented. Moreover, we have further validated the effectiveness of our detergent-free decellularization protocol in the removal of cellular proteins and retention of the matrisome. It has also been established that the decellularized ECM and its derivatives can provide more tissue-specific cues than traditionally used biological scaffolds and are therefore more physiologically relevant for the development of hydrogels, bioinks and medium additives, in order to create a pancreatic niche. The data generated in this study would contribute significantly to the efforts of comprehensively defining the ECM atlas and also serve as a standard for the human pancreatic proteome to provide further guidance for design and engineering strategies for improved tissue engineering scaffolds.


Assuntos
Matriz Extracelular , Proteoma , Humanos , Pâncreas , Engenharia Tecidual , Alicerces Teciduais
10.
Biotechnol Bioeng ; 118(3): 1177-1185, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270214

RESUMO

Islet transplantation is emerging as a therapeutic option for type 1 diabetes, albeit, only a small number of patients meeting very stringent criteria are eligible for the treatment because of the side effects of the necessary immunosuppressive therapy and the relatively short time frame of normoglycemia that most patients achieve. The challenge of the immune-suppressive regimen can be overcome through microencapsulation of the islets in a perm-selective coating of alginate microbeads with poly-l-lysine or poly- l-ornithine. In addition to other issues including the nutrient supply challenge of encapsulated islets a critical requirement for these cells has emerged as the need to engineer the microenvironment of the encapsulation matrix to mimic that of the native pancreatic scaffold that houses islet cells. That microenvironment includes biological and mechanical cues that support the viability and function of the cells. In this study, the alginate hydrogel was modified to mimic the pancreatic microenvironment by incorporation of extracellular matrix (ECM). Mechanical and biological changes in the encapsulating alginate matrix were made through stiffness modulation and incorporation of decellularized ECM, respectively. Islets were then encapsulated in this new biomimetic hydrogel and their insulin production was measured after 7 days in vitro. We found that manipulation of the alginate hydrogel matrix to simulate both physical and biological cues for the encapsulated islets enhances the mechanical strength of the encapsulated islet constructs as well as their function. Our data suggest that these modifications have the potential to improve the success rate of encapsulated islet transplantation.


Assuntos
Alginatos/química , Materiais Biomiméticos/química , Células Imobilizadas/metabolismo , Microambiente Celular , Células Secretoras de Insulina/metabolismo , Alicerces Teciduais/química , Sobrevivência Celular , Células Imobilizadas/citologia , Matriz Extracelular Descelularizada/química , Humanos , Insulina/biossíntese , Células Secretoras de Insulina/citologia
11.
J Vis Exp ; (163)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955501

RESUMO

Islet transplantation (ITx) has the potential to become the standard of care in beta cell replacement medicine but its results remain inferior to those obtained with whole pancreas transplantation. The protocols currently used for human islet isolation are under scrutiny because they are based on the enzymatic digestion of the organ, whereby the pancreas is demolished, its connections to the body are lost and islets are irreversibly damaged. Islet damage is characterized by critical factors such as the destruction of the extracellular matrix (ECM), which represents the 3D framework of the islet niche and whose loss is incompatible with islet euphysiology. Researchers are proposing the use of ECM-based scaffolds derived from the mammalian pancreas to address this problem and ultimately improve islet viability, function, and lifespan. Currently available methods to obtain such scaffolds are harsh because they are largely detergent based. Thus, we propose a new, detergent-free method that creates less ECM damage and can preserve critical components of pancreatic ECM. The results show that the newly developed decellularization protocol allowed the achievement of complete DNA clearance while the ECM components were retained. The ECM obtained was tested for cytotoxicity and encapsulated with human pancreatic islets which showed a positive cellular behavior with insulin secretion when stimulated with glucose challenge. Collectively, we propose a new method for the decellularization of the human pancreas without the use of conventional ionic and non-ionic chemical detergents. This protocol and the ECM obtained with it could be of use for both in vitro and in vivo applications.


Assuntos
Matriz Extracelular/química , Pâncreas/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Solubilidade
13.
Curr Pharm Des ; 26(26): 3134-3140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039674

RESUMO

BACKGROUND: There is a significant interest in effective oral drug delivery of therapeutic substances. For probiotics, there is a particular need for a delivery platform that protects the bacteria from destruction by the acidic stomach while enabling targeted delivery to the intestine where microbiota naturally reside. The use of probiotics and how they impact the gut microbiota is a growing field and holds promise for the treatment of a variety of gastrointestinal diseases, including irritable bowel disease Crohn's disease and C. diff and other diseases, such as obesity, diabetes, Parkinson's, and Alzheimer's diseases. OBJECTIVE: The aim of this research was to use our newly developed chemically-modified alginate hydrogel with the characteristic feature of stability in acidic environments but disintegration under neutral-basic pH conditions to design a novel system for effective targeted delivery of ingested probiotics. METHODS AND RESULTS: We have used the approach of encapsulation of bacterial cells in the hydrogel of the modified alginate with in vitro studies in both simulated stomach acid and intestinal fluid conditions to demonstrate the potential application of this novel platform in oral delivery of probiotics. Our data provide a proof-of-concept that enables further studies in vivo with this delivery platform. CONCLUSION: We have demonstrated in the present study that our chemically modified alginate hydrogel is resistant to acidic conditions and protects bacterial cells encapsulated in it, but it is sensitive to neutral-basic pH conditions under which it disintegrates and releases its viable bacteria cell payload. Our data provide a proof-ofconcept that enables further studies in vivo with this delivery platform for the efficacy of therapeutic bacteria in various disease conditions.


Assuntos
Probióticos , Alginatos , Excipientes , Humanos , Hidrogéis , Concentração de Íons de Hidrogênio
14.
Ann Biomed Eng ; 48(3): 1103-1111, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31933001

RESUMO

To support the increasing translational use of transplanted cells, there is a need for high-throughput cell encapsulation technologies. Microfluidics is a particularly promising candidate technology to address this need, but conventional polydimethylsiloxane devices have encountered challenges that have limited their utility, including clogging, leaking, material swelling, high cost, and limited scalability. Here, we use a rapid prototyping approach incorporating patterned adhesive thin films to develop a reusable microfluidic device that can produce alginate hydrogel microbeads with high-throughput potential for microencapsulation applications. We show that beads formed in our device have high sphericity and monodispersity. We use the system to demonstrate effective cell encapsulation of mesenchymal stem cells and show that they can be maintained in culture for at least 28 days with no measurable reduction in viability. Our approach is highly scalable and will support diverse translational applications of microencapsulated cells.


Assuntos
Alginatos , Encapsulamento de Células , Hidrogéis , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais , Adesivos , Sobrevivência Celular , Dimetilpolisiloxanos , Microesferas , Polimetil Metacrilato
15.
Ann Biomed Eng ; 48(3): 1058-1070, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31367915

RESUMO

Loss of ovarian function (e.g., due to menopause) leads to profound physiological effects in women including changes in sexual function and osteoporosis. Hormone therapies are a known solution, but their use has significantly decreased due to concerns over cardiovascular disease and certain cancers. We recently reported a tissue-engineering strategy for cell hormone therapy (cHT) in which granulosa cells and theca cells are encapsulated to mimic native ovarian follicles. cHT improved physiological outcomes and safety compared to pharmacological hormone therapies in a rat ovariectomy model. However, cHT did not achieve estrogen levels as high as ovary-intact animals. In this report, we examined if hormone secretion from cHT constructs is impacted by incorporation of bone marrow-derived mesenchymal stem cells (BMSC) since these cells contain regulatory factors such as aromatase necessary for estrogen production. Incorporation of BMSCs led to enhanced estrogen secretion in vitro. Moreover, cHT constructs with BMSCs achieved estrogen secretion levels significantly greater than constructs without BMSCs in ovariectomized rats from 70 to 90 days after implantation, while also regulating pituitary hormones. cHT constructs with BMSC ameliorated estrogen deficiency-induced uterine atrophy without hyperplasia. The results indicate that inclusion of BMSC in cHT strategies can improve performance.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Estrogênios/metabolismo , Células da Granulosa/metabolismo , Terapia de Reposição Hormonal , Células-Tronco Mesenquimais/metabolismo , Células Tecais/metabolismo , Engenharia Tecidual , Animais , Aromatase/metabolismo , Células Cultivadas , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Ovariectomia , Progesterona/metabolismo , Ratos Endogâmicos F344 , Útero/anatomia & histologia
16.
J Agric Food Chem ; 67(37): 10481-10488, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31433940

RESUMO

Here, we report two methods that chemically modify alginate to achieve neutral-basic pH sensitivity of the resultant hydrogel. The first method involves direct amide bond formation between alginate and 4-(2-aminoethyl)benzoic acid. The second method that arose out of the desire to achieve better control of the degradation rate of the alginate hydrogel involves reductive amination of oxidized alginate. The products of both methods result in a hydrogel vehicle for targeted delivery of encapsulated payload under physiological conditions in the gastrointestinal tract. Two-dimensional diffusion-ordered spectroscopy and internal and coaxial external nuclear magnetic resonance standards were used to establish chemical bonding and percent incorporation of the modifying groups into the alginate polymer. The hydrogel made with alginate modified by each method was found to be completely stable under acidic pH conditions while disintegrating within minutes to hours in neutral-basic pH conditions. We found that, while alginate oxidation did not affect the ß-d-mannuronate/α-l-guluronate ratio of alginate, the rate of disintegration of the hydrogel made with oxidized alginate was dependent upon the degree of oxidation.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Administração Oral , Difusão , Hidrogéis/química , Concentração de Íons de Hidrogênio , Oxirredução , Polímeros/química
17.
Cell Transplant ; 27(3): 542-550, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29869518

RESUMO

Currently, islet isolation is performed using harsh collagenases that cause nonspecific injury to both islets and exocrine tissue, negatively affecting the outcome of cell transplantation. We evaluated a novel islet isolation protocol utilizing high concentrations of glucose to cause selective osmotic shock (SOS). Islets have a membrane glucose transporter that allows adaptation to changes in glucose concentrations while exocrine tissue can be selectively destroyed by these osmolar shifts. Canine pancreata were obtained within 15 min after euthanasia from animals ( n = 6) euthanized for reasons unrelated to this study. Each pancreas was divided into 4 segments that were randomized to receive 300 mOsm glucose for 20 min (group 1), 600 mOsm for 20 min (group 2), 300 mOsm for 40 min (group 3), or 600 mOsm for 40 min (group 4). Islet yield, purity, and viability were compared between groups. Mean ± standard error of the mean islet yield for groups 1 to 4 was 428 ± 159, 560 ± 257, 878 ± 443, and 990 ± 394 islet equivalents per gram, respectively. Purity ranged from 37% to 45% without the use of density gradient centrifugation and was not significantly different between groups. Islet cell viability was excellent overall (89%) and did not differ between treatment protocol. Islet function was best in groups treated with 300 mOsm of glucose (stimulation index [SI] = 3.3), suggesting that the lower concentration of glucose may be preferred for use in canine islet isolation. SOS provides a widely available means for researchers to isolate canine islets for use in islet transplantation or in studies of canine islet physiology.


Assuntos
Transportador de Glucose Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Cães , Feminino , Glucose/farmacologia , Masculino , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia
18.
Nat Commun ; 8(1): 1858, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208899

RESUMO

Safe clinical hormone replacement (HR) will likely become increasingly important in the growing populations of aged women and cancer patients undergoing treatments that ablate the ovaries. Cell-based HRT (cHRT) is an alternative approach that may allow certain physiological outcomes to be achieved with lower circulating hormone levels than pharmacological means due to participation of cells in the hypothalamus-pituitary-ovary feedback control loop. Here we describe the in vivo performance of 3D bioengineered ovarian constructs that recapitulate native cell-cell interactions between ovarian granulosa and theca cells as an approach to cHRT. The constructs are fabricated using either Ca++ or Sr++ to crosslink alginate. Following implantation in ovariectomized (ovx) rats, the Sr++-cross-linked constructs achieve stable secretion of hormones during 90 days of study. Further, we show these constructs with isogeneic cells to be effective in ameliorating adverse effects of hormone deficiency, including bone health, uterine health, and body composition in this rat model.


Assuntos
Células da Granulosa/transplante , Terapia de Reposição Hormonal/métodos , Ovário/citologia , Alginatos/química , Animais , Densidade Óssea , Cálcio/química , Transplante de Células/métodos , Estrogênios/metabolismo , Feminino , Hormônios/sangue , Osteocalcina/sangue , Insuficiência Ovariana Primária/terapia , Ratos Endogâmicos F344 , Estrôncio/química , Células Tecais/transplante , Útero/fisiologia
19.
Biomater Sci ; 5(12): 2437-2447, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29051963

RESUMO

Type-1 Diabetes (T1D) is a devastating autoimmune disorder which results in the destruction of beta cells within the pancreas. A promising treatment strategy for T1D is the replacement of the lost beta cell mass through implantation of immune-isolated microencapsulated islets referred to as the bioartificial pancreas. The goal of this approach is to restore blood glucose regulation and prevent the long-term comorbidities of T1D without the need for immunosuppressants. A major requirement in the quest to achieve this goal is to address the oxygen needs of islet cells. Islets are highly metabolically active and require a significant amount of oxygen for normal function. During the process of isolation, microencapsulation, and processing prior to transplantation, the islets' oxygen supply is disrupted, and a large amount of islet cells are therefore lost due to extended hypoxia, thus creating a major barrier to clinical success with this treatment. In this work, we have investigated the oxygen generating compounds, sodium percarbonate (SPO) and calcium peroxide (CPO) as potential supplemental oxygen sources for islets during isolation and encapsulation before and immediately after transplantation. First, SPO particles were used as an oxygen source for islets during isolation. Secondly, silicone films containing SPO were used to provide supplemental oxygen to islets for up to 4 days in culture. Finally, CPO was used as an oxygen source for encapsulated cells by co-encapsulating CPO particles with islets in permselective alginate microspheres. These studies provide an important proof of concept for the utilization of these oxygen generating materials to prevent beta cell death caused by hypoxia.


Assuntos
Órgãos Bioartificiais , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/transplante , Oxigênio/metabolismo , Animais , Glicemia , Diabetes Mellitus Tipo 1/patologia , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Microesferas , Pâncreas/metabolismo , Pâncreas/patologia , Transplante de Pâncreas
20.
Cell Reprogram ; 19(4): 255-262, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28632450

RESUMO

The differentiation of multipotent stem cells toward a pancreatic lineage provides us with an alternative cell-based therapeutic approach to type 1 diabetes and enables us to study pancreas development. The current study aims to study the effect of growth factors such as activin A or nicotinamide, alone and in combinations with the transcription factor, PDX1 (pancreatic and duodenal homeobox-1), on human amnion epithelial cells (hAECs) toward a pancreatic lineage. Ectopic expression of Pdx1 followed by treatment of hAECs with nicotinamide for 4 days resulted in strong induction of pancreatic endoderm and pancreatic progenitor genes, including NKX6.1 and NEUROD1. Pancreatic lineage cells expressing PDX1, SOX17, and RFX6 are derived from Pdx1-transduced hAECs treated with activin A or nicotinamide, but not cells treated with activin A or nicotinamide alone. Our study provides a novel culture protocol for generating pancreas-committed cells from hAECs and reveals an interplay between Pdx1 and activin A/nicotinamide signaling in early pancreatic fate determination.


Assuntos
Ativinas/farmacologia , Âmnio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/biossíntese , Niacinamida/farmacologia , Pâncreas/metabolismo , Transativadores/biossíntese , Âmnio/citologia , Antígenos de Diferenciação/biossíntese , Células Epiteliais/citologia , Feminino , Humanos , Pâncreas/citologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...