Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 651: 123738, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38158144

RESUMO

Non-invasive treatment options for hypertrophic scars (HTS) are limited, and treating HTS remains challenging due to their unappealing appearance and associated social stigma. In this work, a novel transfersomal system named Asiatic acid-entrapped transfersomes (AATs) was prepared. AATs were evaluated for their skin permeability, anti-inflammatory activity, and other characteristic parameters to determine the most promising formulation. Asiatic acid-entrapped transfersomal gel (AATG), which was obtained by incorporating the lead AATs in a gel base, underwent testing in an 8-week, double-blind, placebo-controlled, split-skin clinical study. The net skin elasticity (R5), melanin index (MI), and skin surface hydration were analyzed employing Cutometer®, Mexameter®, and Corneometer®, respectively, in order to evaluate the effectiveness of the developed AATG. AATs exhibited vesicular sizes and zeta potential values within the range of (27.15 ± 0.95 to 63.54 ± 2.51 nm) and (-0.010 to -0.129 mV), respectively. TW80AAT gave the highest %EE (90.84 ± 2.99%), deformability index (101.70 ± 11.59 mgs-1), permeation flux at 8 h (0.146 ± 0.005 mg/cm2/h), and anti-inflammatory activity (71.65 ± 1.83%). The clinical study results of AATG indicated no adverse skin reactions. Furthermore, product efficacy tests demonstrated a significant reduction in MI and an increase in net skin elasticity at 2, 4, and 8 weeks. These pilot study outcomes support the effectiveness of the AATG.


Assuntos
Cicatriz Hipertrófica , Lipossomos , Triterpenos Pentacíclicos , Humanos , Administração Cutânea , Anti-Inflamatórios , Cicatriz Hipertrófica/patologia , Método Duplo-Cego , Projetos Piloto , Pele/patologia
2.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956816

RESUMO

The objective of this study is to investigate the in vitro permeation of asiatic acid (AA) in the form of a topical gel after entrapment in transfersomes by Franz diffusion cells. Transfersomes composed of soybean lecithin and three different edge activators including Tween 80 (TW80), Span 80 (SP80) and sodium deoxycholate (SDC) at the ratio of 50:50, 90:10 and 90:10, respectively, together with 0.3% w/w of AA, were prepared by a high-pressure homogenization technique and further incorporated in gels (TW80AATG, SP80AATG and SDCAATG). All transfersomal gels were characterized for their AA contents, dynamic viscosity, pH and homogeneity. Results revealed that the AA content, dynamic viscosity and pH of the prepared transfersomal gels ranged from 0.272 ± 0.006 to 0.280 ± 0.005% w/w, 812.21 ± 20.22 to 1222.76 ± 131.99 Pa.s and 5.94 ± 0.03 to 7.53 ± 0.03, respectively. TW80AATG gave the highest percentage of AA penetration and flux into the Strat-M® membrane at 8 h (8.53 ± 1.42% and 0.024 ± 0.008 mg/cm2/h, respectively) compared to SP80AATG (8.00 ± 1.70% and 0.019 ± 0.010 mg/cm2/h, respectively), SDCAATG (4.80 ± 0.50% and 0.014 ± 0.004 mg/cm2/h, respectively), non-transfersomal gels (0.73 ± 0.44 to 3.13 ± 0.46% and 0.002 ± 0.001 to 0.010 ± 0.002 mg/cm2/h, respectively) and hydroethanolic AA solution in gel (1.18 ± 0.76% and 0.004 ± 0.003 mg/cm2/h, respectively). These findings indicate that the TW80AATG might serve as a lead formulation for further development toward scar prevention and many types of skin disorders.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Administração Cutânea , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Triterpenos Pentacíclicos
3.
Pharmaceutics ; 12(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916782

RESUMO

Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin's outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...