Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260652

RESUMO

Social behavior deficits are an early-emerging marker of psychopathology and are linked with early caregiving quality. However, the infant neural substrates linking early care to social development are poorly understood. Here, we focused on the infant lateral habenula (LHb), a highly-conserved brain region at the nexus between forebrain and monoaminergic circuits. Despite its consistent links to adult psychopathology, this brain region has been understudied in development when the brain is most vulnerable to environmental impacts. In a task combining social and threat cues, suppressing LHb principal neurons had opposing effects in infants versus juveniles, suggesting the LHb promotes a developmental switch in social approach behavior under threat. We observed that early caregiving adversity (ECA) disrupts typical growth curves of LHb baseline structure and function, including volume, firing patterns, neuromodulatory receptor expression, and functional connectivity with cortical regions. Further, we observed that suppressing cortical projections to the LHb rescued social approach deficits following ECA, identifying this microcircuit as a substrate for disrupted social behavior. Together, these results identify immediate biomarkers of ECA in the LHb and highlight this region as a site of early social processing and behavior control.

2.
J Neurosci ; 43(45): 7456-7462, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940586

RESUMO

Environmentally appropriate social behavior is critical for survival across the lifespan. To support this flexible behavior, the brain must rapidly perform numerous computations taking into account sensation, memory, motor-control, and many other systems. Further complicating this process, individuals must perform distinct social behaviors adapted to the unique demands of each developmental stage; indeed, the social behaviors of the newborn would not be appropriate in adulthood and vice versa. However, our understanding of the neural circuit transitions supporting these behavioral transitions has been limited. Recent advances in neural circuit dissection tools, as well as adaptation of these tools for use at early time points, has helped uncover several novel mechanisms supporting developmentally appropriate social behavior. This review, and associated Minisymposium, bring together social neuroscience research across numerous model organisms and ages. Together, this work highlights developmentally regulated neural mechanisms and functional transitions in the roles of the sensory cortex, prefrontal cortex, amygdala, habenula, and the thalamus to support social interaction from infancy to adulthood. These studies underscore the need for synthesis across varied model organisms and across ages to advance our understanding of flexible social behavior.


Assuntos
Tonsila do Cerebelo , Comportamento Social , Recém-Nascido , Humanos , Córtex Pré-Frontal , Encéfalo
3.
PLoS One ; 18(11): e0290871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972112

RESUMO

BACKGROUND: In the short term, parental presence while a human infant is in pain buffers the immediate pain responses, although emerging evidence suggests repeated social buffering of pain may have untoward long-term effects. METHODS/FINDING: To explore the short- and long-term impacts of social buffering of pain, we first measured the infant rat pup's [postnatal day (PN) 8, or 12] response to mild tail shock with the mother present compared to shock alone or no shock. Shock with the mother reduced pain-related behavioral activation and USVs of pups at both ages and reduced Fos expression in the periaqueductal gray, hypothalamic paraventricular nucleus, and the amygdala at PN12 only. At PN12, shock with the mother compared to shock alone differentially regulated expression of several hundred genes related to G-protein-coupled receptors (GPCRs) and neural development, whereas PN8 pups showed a less robust and less coherent expression pattern. In a second set of experiments, pups were exposed to daily repeated Shock-mother pairings (or controls) at PN5-9 or PN10-14 (during and after pain sensitive period, respectively) and long-term outcome assessed in adults. Shock+mother pairing at PN5-9 reduced adult carrageenan-induced thermal hyperalgesia and reduced Fos expression, but PN10-14 pairings had minimal impact. The effect of infant treatment on adult affective behavior showed a complex treatment by age dependent effect. Adult social behavior was decreased following Shock+mother pairings at both PN5-9 and PN10-14, whereas shock alone had no effect. Adult fear responses to a predator odor were decreased only by PN10-14 treatment and the infant Shock alone and Shock+mother did not differ. CONCLUSIONS/SIGNIFICANCE: Overall, integrating these results into our understanding of long-term programming by repeated infant pain experiences, the data suggest that pain experienced within a social context impacts infant neurobehavioral responses and initiates an altered developmental trajectory of pain and affect processing that diverges from experiencing pain alone.


Assuntos
Encéfalo , Mães , Feminino , Humanos , Animais , Ratos , Lactente , Encéfalo/fisiologia , Odorantes , Comportamento Social , Dor/metabolismo , Animais Recém-Nascidos
4.
Biol Psychiatry Glob Open Sci ; 3(2): 169-178, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124361

RESUMO

Significant advances have been made in recent years regarding the developmental trajectories of brain circuits and networks, revealing links between brain structure and function. Emerging evidence highlights the importance of developmental trajectories in determining early psychiatric outcomes. However, efforts to encourage crosstalk between basic developmental neuroscience and clinical practice are limited. Here, we focus on the potential advantage of considering features of neural circuit development when optimizing treatments for adolescent patient populations. Drawing on characteristics of adolescent neurodevelopment, we highlight two examples, safety cues and incentives, that leverage insights from neural circuit development and may have great promise for augmenting existing behavioral treatments for anxiety disorders during adolescence. This commentary seeks to serve as a framework to maximize the translational potential of basic research in developmental populations for strengthening psychiatric treatments. In turn, input from clinical practice including the identification of age-specific clinically relevant phenotypes will continue to guide future basic research in the same neural circuits to better reflect clinical practices. Encouraging reciprocal communication to bridge the gap between basic developmental neuroscience research and clinical implementation is an important step toward advancing both research and practice in this domain.

5.
Neurobiol Learn Mem ; 201: 107762, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116857

RESUMO

Social behaviors dynamically change throughout the lifespan alongside the maturation of neural circuits. The basolateral region of the amygdala (BLA), in particular, undergoes substantial maturational changes from birth throughout adolescence that are characterized by changes in excitation, inhibition, and dopaminergic modulation. In this review, we detail the trajectory through which BLA circuits mature and are influenced by dopaminergic systems to guide transitions in social behavior in infancy and adolescence using data from rodents. In early life, social behavior is oriented towards approaching the attachment figure, with minimal BLA involvement. Around weaning age, dopaminergic innervation of the BLA introduces avoidance of novel peers into rat pups' behavioral repertoire. In adolescence, social behavior transitions towards peer-peer interactions with a high incidence of social play-related behaviors. This transition coincides with an increasing role of the BLA in the regulation of social behavior. Adolescent BLA maturation can be characterized by an increasing integration and function of local inhibitory GABAergic circuits and their engagement by the medial prefrontal cortex (mPFC). Manipulation of these transitions using viral circuit dissection techniques and early adversity paradigms reveals the sensitivity of this system and its role in producing age-appropriate social behavior.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Ratos , Animais , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Dopamina/fisiologia , Comportamento Social
7.
Front Behav Neurosci ; 16: 918862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990728

RESUMO

Flexible and context-appropriate social functioning is key for survival across species. This flexibility also renders social behavior highly plastic, particularly during early development when attachment to caregiver can provide a template for future social processing. As a result, early caregiving adversity can have unique and lasting impacts on social behavior and even confer vulnerability to psychiatric disorders. However, the neural circuit mechanisms translating experience to outcome remain poorly understood. Here, we consider social behavior scaffolding through the lens of reward and threat processing. We begin by surveying several complementary rodent models of early adversity, which together have highlighted impacts on neural circuits processing social cues. We next explore these circuits underlying perturbed social functioning with focus on dopamine (DA) and its role in regions implicated in social and threat processing such as the prefrontal cortex (PFC), basolateral amygdala (BLA) and the lateral habenula (LHb). Finally, we turn to human populations once more to examine how altered DA signaling and LHb dysfunction may play a role in social anhedonia, a common feature in diagnoses such as schizophrenia and major depressive disorder (MDD). We argue that this translational focus is critical for identifying specific features of adversity that confer heightened vulnerability for clinical outcomes involving social cue processing.

8.
J Neurosci ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970562

RESUMO

Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the most common monogenic cause of intellectual disability, autism spectrum disorders (ASDs) and anxiety disorders. Loss of fragile x mental retardation protein (FMRP) results in disruptions of synaptic development during a critical period (CP) of circuit formation in the basolateral amygdala (BLA). However, it is unknown how these alterations impact microcircuit development and function. Using a combination of electrophysiologic and behavioral approaches in both male (Fmr1-/y) and female (Fmr1-/-) mice, we demonstrate that principal neurons (PNs) in the Fmr1KO BLA exhibit hyperexcitability during a sensitive period in amygdala development. This hyperexcitability contributes to increased excitatory gain in fear-learning circuits. Further, synaptic plasticity is enhanced in the BLA of Fmr1KO mice. Behavioral correlation demonstrates that fear-learning emerges precociously in the Fmr1KO mouse. Early life THIP intervention ameliorates fear-learning in Fmr1KO mice. These results suggest that CP plasticity in the amygdala of the Fmr1KO mouse may be shifted to earlier developmental timepoints.SIGNIFICANCE STATEMENTIn these studies we identify early developmental alterations in principal neurons in the FXS BLA. We show that as early as P14, excitability and feed-forward excitation, and synaptic plasticity is enhanced in Fmr1KO lateral amygdala. This correlates with precocious emergence of fear-learning in the Fmr1KO mouse. Early life THIP intervention restores CP plasticity in WT mice and ameliorates fear-learning in the Fmr1KO mouse.

9.
Neuron ; 109(24): 4018-4035.e7, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34706218

RESUMO

Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Dopamina , Tonsila do Cerebelo , Animais , Humanos , Optogenética , Ratos , Comportamento Social
10.
Front Syst Neurosci ; 15: 718198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483852

RESUMO

Decades of research have informed our understanding of how stress impacts the brain to perturb behavior. However, stress during development has received specific attention as this occurs during a sensitive period for scaffolding lifelong socio-emotional behavior. In this review, we focus the developmental neurobiology of stress-related pathology during infancy and focus on one of the many important variables that can switch outcomes from adaptive to maladaptive outcome: caregiver presence during infants' exposure to chronic stress. While this review relies heavily on rodent neuroscience research, we frequently connect this work with the human behavioral and brain literature to facilitate translation. Bowlby's Attachment Theory is used as a guiding framework in order to understand how early care quality impacts caregiver regulation of the infant to produce lasting outcomes on mental health.

11.
Nature ; 596(7873): 553-557, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381215

RESUMO

Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.


Assuntos
Aprendizagem , Comportamento Materno/psicologia , Mães/psicologia , Neurônios/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Abstinência Sexual/psicologia , Ensino , Animais , Feminino , Abrigo para Animais , Tamanho da Ninhada de Vivíparos , Camundongos , Comportamento de Nidação , Plasticidade Neuronal
12.
Front Syst Neurosci ; 15: 828685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126064

RESUMO

The ability to sense, perceive, and respond appropriately to aversive cues is critical for survival. Conversely, dysfunction in any of these pathway components can lead to heightened avoidance of neutral or rewarding cues, such as social partners. The underlying circuitry mediating both negative valence processing and social behavior is particularly sensitive to early life experience, but mechanisms linking experience to pathology remain elusive. Previous research in humans, rodents, and non-human primates has highlighted the unique neurobiology of the developing infant and the role of the caregiver in mediating the infant's negative valence circuitry, and the importance of this early social relationship for scaffolding lasting social behavior. In this review, we summarize the current literature on the development of negative valence circuits in the infant and their social regulation by the caregiver following both typical and adversity-rearing. We focus on clinically-relevant research using infant rodents which highlights the amygdala and its interface with the mesolimbic dopamine system through innervation from the ventral tegmental area (VTA) as a locus of dysfunction following early-life adversity. We then describe how these circuits are recruited to perturb life-long social behavior following adversity and propose additional therapeutic targets in these circuits with an eye toward developing age-appropriate interventions.

13.
Biol Psychiatry ; 89(7): 641-650, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33109337

RESUMO

Anxiety disorders are the most common form of mental illness and are more likely to emerge during childhood compared with most other psychiatric disorders. While research on children is the gold standard for understanding the behavioral expression of anxiety and its neural circuitry, the ethical and technical limitations in exploring neural underpinnings limit our understanding of the child's developing brain. Instead, we must rely on animal models to build strong methodological bridges for bidirectional translation to child development research. Using the caregiver-infant context, we review the rodent literature on early-life fear development to characterize developmental transitions in amygdala function underlying age-specific behavioral transitions. We then describe how this system can be perturbed by early-life adversity, including reduced efficacy of the caregiver as a safe haven. We suggest that greater integration of clinically informed animal research enhances bidirectional translation to permit new approaches to therapeutics for children with early onset anxiety disorders.


Assuntos
Tonsila do Cerebelo , Medo , Animais , Ansiedade , Transtornos de Ansiedade , Neurobiologia
14.
Curr Opin Behav Sci ; 36: 106-114, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33043102

RESUMO

During a sensitive period associated with attachment, the infant brain has unique circuitry that enables the specialized adaptive behaviors required for survival in infancy. This infant brain is not an immature version of the adult brain. Within the attachment relationship, the infant remains close (proximity seeking) to the caregiver for nurturing and survival needs, but the caregiver also provides the immature infant with the physiological regulation interaction needed before self-regulation matures. Here we provide examples from the human and animal literature that illustrate some of these regulatory functions during sensitive periods, recent advances demonstrating the supporting transient neural mechanisms, and how these systems go awry in the absence of species-expected caregiving.

15.
Nat Commun ; 11(1): 1119, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111822

RESUMO

The roots of psychopathology frequently take shape during infancy in the context of parent-infant interactions and adversity. Yet, neurobiological mechanisms linking these processes during infancy remain elusive. Here, using responses to attachment figures among infants who experienced adversity as a benchmark, we assessed rat pup cortical local field potentials (LFPs) and behaviors exposed to adversity in response to maternal rough and nurturing handling by examining its impact on pup separation-reunion with the mother. We show that during adversity, pup cortical LFP dynamic range decreased during nurturing maternal behaviors, but was minimally impacted by rough handling. During reunion, adversity-experiencing pups showed aberrant interactions with mother and blunted cortical LFP. Blocking pup stress hormone during either adversity or reunion restored typical behavior, LFP power, and cross-frequency coupling. This translational approach suggests adversity-rearing produces a stress-induced aberrant neurobehavioral processing of the mother, which can be used as an early biomarker of later-life pathology.


Assuntos
Animais Recém-Nascidos , Encéfalo/fisiologia , Comportamento Materno/fisiologia , Apego ao Objeto , Estresse Psicológico/fisiopatologia , Animais , Animais Recém-Nascidos/fisiologia , Animais Recém-Nascidos/psicologia , Ansiedade de Separação/sangue , Ansiedade de Separação/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Corticosterona/antagonistas & inibidores , Corticosterona/sangue , Feminino , Masculino , Relações Mãe-Filho , Mães , Ratos , Estresse Psicológico/sangue
16.
Dev Psychopathol ; 32(5): 1696-1714, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33427190

RESUMO

Environmental adversity increases child susceptibility to disrupted developmental outcomes, but the mechanisms by which adversity can shape development remain unclear. A translational cross-species approach was used to examine stress-mediated pathways by which poverty-related adversity can influence infant social development. Findings from a longitudinal sample of low-income mother-infant dyads indicated that infant cortisol (CORT) on its own did not mediate relations between early-life scarcity-adversity exposure and later infant behavior in a mother-child interaction task. However, maternal CORT through infant CORT served as a mediating pathway, even when controlling for parenting behavior. Findings using a rodent "scarcity-adversity" model indicated that pharmacologically blocking pup corticosterone (CORT, rodent equivalent to cortisol) in the presence of a stressed mother causally prevented social transmission of scarcity-adversity effects on pup social behavior. Furthermore, pharmacologically increasing pup CORT without the mother present was not sufficient to disrupt pup social behavior. Integration of our cross-species results suggests that elevated infant CORT may be necessary, but without elevated caregiver CORT, may not be sufficient in mediating the effects of environmental adversity on development. These findings underscore the importance of considering infant stress physiology in relation to the broader social context, including caregiver stress physiology, in research and interventional efforts.


Assuntos
Hidrocortisona , Mães , Corticosterona , Feminino , Humanos , Lactente , Relações Mãe-Filho , Poder Familiar , Estresse Psicológico
17.
Front Psychol ; 10: 2472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803087

RESUMO

It has long been theorized that humans develop higher mental functions, such as executive functions (EFs), within the context of interpersonal interactions and social relationships. Various components of social interactions, such as interpersonal communication, perspective taking, and conforming/adhering to social rules, may create important (and perhaps even necessary) opportunities for the acquisition and continued practice of EF skills. Furthermore, positive and stable relationships facilitate the development and maintenance of EFs across the lifespan. However, experimental studies investigating the extent to which social experiences contribute causally to the development of EFs are lacking. Here, we present experimental evidence that social experiences and the acquisition of social skills influence the development of EFs. Specifically, using a rat model, we demonstrate that following exposure to early-life adversity, a socialization intervention causally improves working memory in peri-adolescence. Our findings combined with the broader literature promote the importance of cultivating social skills in support of EF development and maintenance across the lifespan. Additionally, cross-species research will provide insight into causal mechanisms by which social experiences influence cognitive development and contribute to the development of biologically sensitive interventions.

18.
Dev Cogn Neurosci ; 40: 100716, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704654

RESUMO

It is well-established that children from low-income, under-resourced families are at increased risk of altered social development. However, the biological mechanisms by which poverty-related adversities can "get under the skin" to influence social behavior are poorly understood and cannot be easily ascertained using human research alone. This study utilized a rodent model of "scarcity-adversity," which encompasses material resource deprivation (scarcity) and reduced caregiving quality (adversity), to explore how early-life scarcity-adversity causally influences social behavior via disruption of developing stress physiology. Results showed that early-life scarcity-adversity exposure increased social avoidance when offspring were tested in a social approach test in peri-adolescence. Furthermore, early-life scarcity-adversity led to blunted hypothalamic-pituitary-adrenal (HPA) axis activity as measured via adrenocorticotropic hormone (ACTH) and corticosterone (CORT) reactivity following the social approach test. Western blot analysis of brain tissue revealed that glucocorticoid receptor levels in the dorsal (but not ventral) hippocampus and medial prefrontal cortex were significantly elevated in scarcity-adversity reared rats following the social approach test. Finally, pharmacological repletion of CORT in scarcity-adversity reared peri-adolescents rescued social behavior. Our findings provide causal support that early-life scarcity-adversity exposure negatively impacts social development via a hypocorticosteronism-dependent mechanism, which can be targeted via CORT administration to rescue social behavior.


Assuntos
Corticosterona/uso terapêutico , Sistema Hipotálamo-Hipofisário/fisiologia , Comportamento Social , Adolescente , Animais , Criança , Corticosterona/farmacologia , Feminino , Humanos , Masculino , Ratos , Estresse Psicológico
19.
Sci Rep ; 9(1): 16701, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723235

RESUMO

Sleep quality varies widely across individuals, especially during normal aging, with impaired sleep contributing to deficits in cognition and emotional regulation. Sleep can also be impacted by a variety of adverse events, including childhood adversity. Here we examined how early life adverse events impacted later life sleep structure and physiology using an animal model to test the relationship between early life adversity and sleep quality across the life span. Rat pups were exposed to an Adversity-Scarcity model from postnatal day 8-12, where insufficient bedding for nest building induces maternal maltreatment of pups. Polysomnography and sleep physiology were assessed in weaning, early adult and older adults. Early life adversity induced age-dependent disruptions in sleep and behavior, including lifelong spindle decreases and later life NREM sleep fragmentation. Given the importance of sleep in cognitive and emotional functions, these results highlight an important factor driving variation in sleep, cognition and emotion throughout the lifespan that suggest age-appropriate and trauma informed treatment of sleep problems.


Assuntos
Comportamento Animal , Trauma Psicológico/complicações , Transtornos do Sono-Vigília/etiologia , Estresse Psicológico , Animais , Animais Recém-Nascidos , Feminino , Masculino , Ratos , Transtornos do Sono-Vigília/patologia , Transtornos do Sono-Vigília/psicologia
20.
Proc Natl Acad Sci U S A ; 116(45): 22821-22832, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636210

RESUMO

Infant maltreatment increases vulnerability to physical and mental disorders, yet specific mechanisms embedded within this complex infant experience that induce this vulnerability remain elusive. To define critical features of maltreatment-induced vulnerability, rat pups were reared from postnatal day 8 (PN8) with a maltreating mother, which produced amygdala and hippocampal deficits and decreased social behavior at PN13. Next, we deconstructed the maltreatment experience to reveal sufficient and necessary conditions to induce this phenotype. Social behavior and amygdala deficits (volume, neurogenesis, c-Fos, local field potential) required combined chronic high corticosterone and maternal presence (not maternal behavior). Hippocampal deficits were induced by chronic high corticosterone regardless of social context. Causation was shown by blocking corticosterone during maltreatment and suppressing amygdala activity during social behavior testing. These results highlight (1) that early life maltreatment initiates multiple pathways to pathology, each with distinct causal mechanisms and outcomes, and (2) the importance of social presence on brain development.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Hipocampo/fisiopatologia , Mães/psicologia , Comportamento Social , Estresse Fisiológico , Animais , Corticosterona/administração & dosagem , Corticosterona/sangue , Feminino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...