Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 7(9): 2300062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37745829

RESUMO

Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.

2.
ACS Sustain Chem Eng ; 11(5): 1875-1887, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778524

RESUMO

In this work, a three-step approach to isolate the main components of lignocellulosic cardoon, lignin and cellulose, was investigated. The raw defatted biomass, Cynara cardunculus, after steam explosion was subjected to a mild organosolv treatment to extract soluble lignin (L1). Then, enzymatic hydrolysis was performed to achieve decomposition of the saccharidic portion into monosaccharides and isolate residual lignin (L2). The fractionation conditions were optimized to obtain a lignin as less degraded as possible and to maximize the yield of enzymatic hydrolysis. Furthermore, the effect of the use of aqueous ammonia as an extraction catalyst on both fractions was studied. Each fraction was characterized by advanced techniques, such as elemental analysis and 31P nuclear magnetic resonance (NMR), 13C-1H two-dimensional (2D)-NMR, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and UV-vis spectroscopies for lignin and X-ray diffraction (XRD), Klason compositional analysis, elemental analysis, and ATR-FTIR spectroscopy for cellulose-rich fractions. The impact of the cellulose-rich fraction composition and crystallinity was also correlated to the efficiency of the hydrolysis step, performed using the enzymatic complex Cellic CTec3.

3.
ACS Omega ; 7(29): 25253-25264, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910110

RESUMO

We investigated the effects of solvent fractionation on the chemical structures of two commercial technical lignins. We compared the effect of Soxhlet and Kumagawa extraction. The aim of this work was to compare the impact of the methods and of the solvents on lignin characteristics. Our investigation confirmed the potentialities of fractionation techniques in refining lignin properties and narrowing the molecular weight distribution. Furthermore, our study revealed that the Kumagawa process enhances the capacity of oxygenated solvents (ethanol and tetrahydrofuran) to extract lignin that contains oxidized groups and is characterized by higher average molecular weights. Furthermore, the use of tetrahydrofuran after ethanol treatment enabled the isolation of lignin with a higher ratio between carbonyl and other oxidized groups. This result was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C NMR and two-dimensional (2D) NMR spectroscopies, gel permeation chromatography (GPC), and analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis. Ultraviolet-visible (UV-vis) spectra evidenced the enrichment in the most conjugated species observed in the extracted fractions. Elemental analyses pointed at the cleavage of C-heteroatom bonds enhanced by the Kumagawa extraction.

4.
Chempluschem ; 87(8): e202200204, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000154

RESUMO

Nanocellulose has received enormous scientific interest for its abundance, easy manufacturing, biodegradability, and low cost. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) are ideal candidates to replace plastic coating in the textile and paper industry. Thanks to their capacity to form an interconnected network kept together by hydrogen bonds, nanocelluloses perform an unprecedented strengthening action towards cellulose- and other fiber-based materials. Furthermore, nanocellulose use implies greener application procedures, such as deposition from water. The surface chemistry of nanocellulose plays a pivotal role in influencing the performance of the coating: tailored surface functionalization can introduce several properties, such as gas or grease barrier, hydrophobicity, antibacterial and anti-UV behavior. This review summarizes recent achievements in the use of nanocellulose for paper and textile coating, evidencing critical aspects of coating performances related to deposition technique, nanocellulose morphology, and surface functionalization. Furthermore, beyond focusing on the aspects strictly related to large-scale coating applications for paper and textile industries, this review includes recent achievements in the use of nanocellulose coating for the safeguarding of Cultural Heritage, an extremely noble and interesting emerging application of nanocellulose, focusing on consolidation of historical paper and archaeological textile. Finally, nanocellulose use in electronic devices as an electrode modifier is highlighted.


Assuntos
Nanofibras , Nanopartículas , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Nanopartículas/química , Têxteis
5.
ACS Appl Mater Interfaces ; 13(37): 44972-44982, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34519207

RESUMO

An innovative consolidation strategy for degraded paper is presented based on the reversible application of cellulose nanocrystals as sustainable fillers to reinforce mechanical properties and resistance to further degradation. The compatibility and efficacy of the proposed consolidation treatment are assessed first on pure cellulose paper, used as a model, by reliable techniques such as field emission scanning electron microscopy, atomic force microscopy, tensile tests, X-ray powder diffraction, and Fourier transform infrared spectroscopy, evidencing the influence of the surface functionalization of nanocellulose on the consolidation and protection effects. Then, the consolidation technique is applied to real aged paper samples from Breviarium romanum ad usum Fratrum Minorum S.P. (1738), demonstrating the promising potential of the suggested approach. Amperometric measurements, carried out with a smart electrochemical tool developed in our laboratory, demonstrate the reversibility of the proposed treatment by removal of the nanocrystalline cellulose from the paper surface with a suitable cleaning hydrogel. This completely new feature of the consolidation treatment proposed here satisfies a pivotal requisite in cultural heritage conservation because the methodological requirement for the ″reversibility″ of any conservation measure is a fundamental goal for restorers. A paper artifact, in fact, is subject to a number of natural and man-made hazards, inducing continuous degradation. With time, monitoring and consolidation actions need to be often performed to ensure conservation, and this tends to modify the status quo and compromise the artifact integrity. Removable treatments can potentially avoid erosion of the artifact integrity.

6.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443618

RESUMO

Cellulose nanocrystals (CNCs) represent intriguing biopolymeric nanocrystalline materials, that are biocompatible, sustainable and renewable, can be chemically functionalized and are endowed with exceptional mechanical properties. Recently, studies have been performed to prepare CNCs with extraordinary photophysical properties, also by means of their functionalization with organic light-emitting fluorophores. In this paper, we used the reductive amination reaction to chemically bind 4-(1-pyrenyl)butanamine selectively to the reducing termini of sulfated or neutral CNCs (S_CNC and N_CNC) obtained from sulfuric acid or hydrochloric acid hydrolysis. The functionalization reaction is simple and straightforward, and it induces the appearance of the typical pyrene emission profile in the functionalized materials. After a characterization of the new materials performed by ATR-FTIR and fluorescence spectroscopies, we demonstrate luminescence quenching of the decorated N_CNC by copper (II) sulfate, hypothesizing for these new functionalized materials an application in water purification technologies.

7.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445737

RESUMO

Cellulose nanomaterials have been widely investigated in the last decade, unveiling attractive properties for emerging applications. The ability of sulfated cellulose nanocrystals (CNCs) to guide the supramolecular organization of amphiphilic fullerene derivatives at the air/water interface has been recently highlighted. Here, we further investigated the assembly of Langmuir hybrid films that are based on the electrostatic interaction between cationic fulleropyrrolidines deposited at the air/water interface and anionic CNCs dispersed in the subphase, assessing the influence of additional negatively charged species that are dissolved in the water phase. By means of isotherm acquisition and spectroscopic measurements, we demonstrated that a tetra-sulfonated porphyrin, which was introduced in the subphase as anionic competitor, strongly inhibited the binding of CNCs to the floating fullerene layer. Nevertheless, despite the strong inhibition by anionic molecules, the mutual interaction between fulleropyrrolidines at the interface and the CNCs led to the assembly of robust hybrid films, which could be efficiently transferred onto solid substrates. Interestingly, ITO-electrodes that were modified with five-layer hybrid films exhibited enhanced electrical capacitance and produced anodic photocurrents at 0.4 V vs Ag/AgCl, whose intensity (230 nA/cm2) proved to be four times higher than the one that was observed with the sole fullerene derivative (60 nA/cm2).

8.
RSC Adv ; 11(19): 11536-11540, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35423602

RESUMO

In this work we demonstrated that the peripherical thioacetylation of a bithiophene-DPP molecule can greatly influence the solid-state properties triggering the formation of NIR emitting J-aggregates in both bithiophene-DPP films and nanoparticles. The morphology and the kinetic and thermal stability of the organic nanoparticles were also investigated.

9.
Chem Mater ; 31(17): 6315-6346, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565617

RESUMO

The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components. With this Perspective, we intend to coalesce all the scattered reports on the above-mentioned classes of hydrogen bonded semiconductors, spanning across several disciplines and many active research groups. The article will comprise both published and unpublished results, on stability during aging, upon electrical, chemical and thermal stress, and will finish with an outlook section related to biological degradation and biological stability of selected hydrogen bonded molecules employed as semiconductors in organic electronic devices. We demonstrate that when the purity, the long-range order and the strength of chemical bonds, are considered, then the Hydrogen bonded organic semiconductors are the privileged class of materials having the potential to compete with inorganic semiconductors. As an experimental historical study of stability, we fabricated and characterized organic transistors from a material batch synthesized in 1932 and compared the results to a fresh material batch.

10.
Soft Matter ; 14(36): 7390-7400, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30198543

RESUMO

Cellulose nanopaper (CNP) features appealing properties, including transparency, flatness, a low thermal expansion coefficient and thermal stability, often outperforming conventional paper. However, free-standing crystalline cellulose films usually swell in water or upon moisture sorption, compromising part of their outstanding properties. This remains a major problem whenever working in a water environment is required. Freestanding cellulose nanopaper is prepared by solution casting water suspensions of cellulose nanocrystals with an average width of 10 nm and an average aspect ratio of 28, isolated from Avicel by acid hydrolysis and extensively characterized by AFM and FE-SEM measurements and GPC detection of their degree of polymerization. We demonstrate by elemental analyses, FT-IR, Raman spectroscopy, XRD measurements and water contact angle detection that wet treatment with lauroyl chloride results in surface hydrophobization of nanopaper. The hydrophobized nanopaper, C12-CNP, shows a more compact surface morphology than the starting CNP, due to the effect of chemical functionalization, and presents enhanced resistance to water, as assessed by electrochemical permeation experiments. The new hydrophobized nanopaper is a promising substrate for thin film devices designed to work in a humid environment.

11.
Org Lett ; 19(18): 4754-4757, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28876956

RESUMO

Direct arylation of 5-octylthieno[3,4-c]pyrrole-4,6-dione with a series of functionalized aryl iodides via C-H bond activation is demonstrated in a deep eutectic solvent made of choline chloride and urea in non-anhydrous conditions and without exclusion of air. This is the first demonstration of a thiophene-aryl coupling via direct arylation in deep eutectic solvents.

12.
Bioconjug Chem ; 27(7): 1614-23, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27245093

RESUMO

The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing.


Assuntos
Corantes Fluorescentes/química , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Transferência de Energia , Corantes Fluorescentes/síntese química , Modelos Moleculares , Conformação Proteica , Rhodobacter sphaeroides
13.
ACS Appl Mater Interfaces ; 7(7): 3902-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25646868

RESUMO

Four linear terarylene molecules (i) 4-nitro-terphenyl-4″-methanethiol (NTM), (ii) 4-nitro-terphenyl-3″,5″-dimethanethiol (NTD), (iii) ([1,1';4',1″] terphenyl-3,5-diyl)methanethiol (TM), and (iv) ([1,1';4',1″] terphenyl-3,5-diyl)dimethanethiol (TD) have been synthesized and their self-assembled monolayers (SAMs) have been obtained on polycrystalline gold. NTM and NTD SAMs have been characterized by X-ray photoelectron spectroscopy, Kelvin probe measurements, electrochemistry, and contact angle measurements. The terminal nitro group (-NO2) is irreversibly reduced to hydroxylamine (-NHOH), which can be reversibly turned into nitroso group (-NO). The direct comparison between NTM/NTD and TM/TD SAMs unambiguously shows the crucial influence of the nitro group on electrowetting properties of polycrystalline Au. The higher grade of surface tension related to NHOH has been successfully exploited for basic operations of digital µ-fluidics, such as droplets motion and merging.

14.
ACS Appl Mater Interfaces ; 6(1): 153-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328296

RESUMO

Single-walled carbon nanotubes (SWCNTs) were suspended in 1,2-dichloroethane by noncovalent functionalization with a low-band-gap conjugated polymer 1 alternating dialkoxyphenylene-bisthiophene units with benzo[c][2,1,3]thiadiazole monomeric units. The suspended 1/SWCNT blend was transferred onto different solid substrates by the Langmuir-Schaefer deposition method, resulting in films with a high percentage of aligned nanotubes. Photoelectrochemical characterization of 1/SWCNT thin films on indium-tin oxide showed the benefits of SWCNT alignment for photoconversion efficiency.

15.
J Nanosci Nanotechnol ; 14(9): 6732-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924324

RESUMO

The synthetic conjugated poly(1,4-arylene-2,5-thienylene) containing benzo[c][2,1,3]thiadiazole monomeric units (Bz-PAT) is proposed as active layer for the selective detection of mercuric ions. The Bz-PAT polymer chemical structure induces the formation of a disordered film with numerous vacancies and the size of these defects could be exploited for a reversible trapping of mercuric ions. For these reasons the Langmuir-Schaefer (LS) deposition method has been employed for transferring Bz-PAT layers with the desired accurate bi-dimensional organization control of the layer and with a high control of the deposition parameters. In this contribution, the frequency variation of quartz crystal microbalances functionalized with 10, 20, 30 and 40 LS runs of Bz-PAT have been investigated in response to the injection of aqueous solutions of HgCl2, Pb(NO3)2, NiCl2, CdCl2 and ZnSO4 at different concentrations (0.5 mM, 1 mM, 5 mM). An almost linear dependence on the number of the LS layers and hence on the film thickness, measured by means of ellipsometric spectroscopy, has been found in terms of sensor response to concentration of Hg2+ ions fluxed. By means of UV-Vis spectroscopy, the variations in the π-π* absorption band of the polymer, attributed to the thiophene segment, induced by HgCl2 injection has been analyzed and explained as a consequence of the electron transfer from the mercuric ion to the polymer solid film. These results, together with the linear relation found between the number of deposited layers and LS film thickness, suggest that the sensing mechanism can be explained both by an electron interaction between active layer and analyte and a diffusion mechanism of Hg2+ into the solid film that reaches an asymptotic value at 30 runs (about 80 nm), then a higher number of layers does not influence the sensor sensibility.


Assuntos
Íons/química , Mercúrio/química , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Análise Espectral/métodos , Íons/análise , Mercúrio/análise
16.
Angew Chem Int Ed Engl ; 51(44): 11019-23, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23011764

RESUMO

Light machine: The simplest photosynthetic protein able to convert sunlight into other energy forms is covalently functionalized with a tailored organic dye to obtain a fully functional hybrid complex that outperforms the natural system in light harvesting and conversion ability.


Assuntos
Corantes Fluorescentes/química , Complexos de Proteínas Captadores de Luz/química , Luz , Bacterioclorofilas/química , Cristalografia por Raios X , Fluorescência , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Modelos Moleculares , Oxirredução , Rhodobacter sphaeroides/química , Ubiquinona/análogos & derivados , Ubiquinona/química
17.
Langmuir ; 26(11): 8430-40, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20433150

RESUMO

Self-assembled monolayers (SAMs) derived of 4-methoxy-terphenyl-3'',5''-dimethanethiol (TPDMT) and 4-methoxyterphenyl-4''-methanethiol (TPMT) have been prepared by chemisorption from solution onto gold thin films and nanoparticles. The SAMs have been characterized by spectroscopic ellipsometry, Raman spectroscopy and atomic force microscopy to determine their optical properties, namely the refractive index and extinction coefficient, in an extended spectral range of 0.75-6.5 eV. From the analysis of the optical data, information on SAMs structural organization has been inferred. Comparison of SAMs generated from the above aromatic thiols to well-known SAMs generated from the alkanethiol dodecanethiol revealed that the former aromatic SAMs are densely packed and highly vertically oriented, with a slightly higher packing density and a absence of molecular inclination in TPMT/Au. The thermal behavior of SAMs has also been monitored using ellipsometry in the temperature range 25-500 degrees C. Gold nanoparticles functionalized by the same aromatic thiols have also been discussed for surface enhanced Raman spectroscopy applications. This study represents a step forward tailoring the optical and thermal behavior of surfaces as well as nanoparticles.

18.
J Org Chem ; 72(26): 10272-5, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18044921

RESUMO

Oligoarylenes with three or four aromatic rings, bearing two S-acetylated mercaptomethyl groups in 1,3 position on one end of the polyaromatic system and presenting various functionalities on the other terminal ring, have been synthesized by the Suzuki-Miyaura cross-coupling reaction. The use of palladium complexes with a Buchwald's phosphine as ligand allowed us to perform this coupling reaction also in the presence of benzylic S-acetyl-protected functionalities on the aromatic halide. The obtained oligoarylenes are potential novel candidates for the generation of self-assembling monolayers on metal substrates.


Assuntos
Derivados de Benzeno/química , Hidrocarbonetos Clorados/química , Compostos de Sulfidrila/química , Compostos de Terfenil/síntese química , Ligantes , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...