Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(6): 106905, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305696

RESUMO

Tau-mediated toxicity is associated with cognitive decline and Alzheimer's disease (AD) progression. In particular, tau post-translational modifications (PTMs) are thought to generate aberrant tau species resulting in neuronal dysfunction. Despite being well characterized in postmortem AD brain, it is unclear how caspase-mediated C-terminal tau cleavage promotes neurodegeneration, as few studies have developed the models to dissect this pathogenic mechanism. Here, we show that proteasome impairment results in cleaved tau accumulation at the post-synaptic density (PSD), a process that is modulated by neuronal activity. Cleaved tau (at residue D421) impairs neuronal firing and causes inefficient initiation of network bursts, consistent with reduced excitatory drive. We propose that reduced neuronal activity, or silencing, is coupled to proteasome dysfunction, which drives cleaved tau accumulation at the PSD and subsequent synaptotoxicity. Our study connects three common themes in the progression of AD: impaired proteostasis, caspase-mediated tau cleavage, and synapse degeneration.

2.
Neuron ; 103(5): 785-801.e8, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31303374

RESUMO

We performed RNA sequencing on 40,000 cells to create a high-resolution single-cell gene expression atlas of developing human cortex, providing the first single-cell characterization of previously uncharacterized cell types, including human subplate neurons, comparisons with bulk tissue, and systematic analyses of technical factors. These data permit deconvolution of regulatory networks connecting regulatory elements and transcriptional drivers to single-cell gene expression programs, significantly extending our understanding of human neurogenesis, cortical evolution, and the cellular basis of neuropsychiatric disease. We tie cell-cycle progression with early cell fate decisions during neurogenesis, demonstrating that differentiation occurs on a transcriptomic continuum; rather than only expressing a few transcription factors that drive cell fates, differentiating cells express broad, mixed cell-type transcriptomes before telophase. By mapping neuropsychiatric disease genes to cell types, we implicate dysregulation of specific cell types in ASD, ID, and epilepsy. We developed CoDEx, an online portal to facilitate data access and browsing.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Neocórtex/embriologia , Neurogênese/genética , Neurônios/metabolismo , Transtorno do Espectro Autista/genética , Ciclo Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/metabolismo , Epilepsia/embriologia , Epilepsia/genética , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Deficiência Intelectual/embriologia , Deficiência Intelectual/genética , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Gravidez , Segundo Trimestre da Gravidez , RNA-Seq , Análise de Célula Única , Telófase/genética
3.
Nat Commun ; 10(1): 2396, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160561

RESUMO

Modern genetic studies indicate that human brain evolution is driven primarily by changes in gene regulation, which requires understanding the biological function of largely non-coding gene regulatory elements, many of which act in tissue specific manner. We leverage chromatin interaction profiles in human fetal and adult cortex to assign three classes of human-evolved elements to putative target genes. We find that human-evolved elements involving DNA sequence changes and those involving epigenetic changes are associated with human-specific gene regulation via effects on different classes of genes representing distinct biological pathways. However, both types of human-evolved elements converge on specific cell types and laminae involved in cerebral cortical expansion. Moreover, human evolved elements interact with neurodevelopmental disease risk genes, and genes with a high level of evolutionary constraint, highlighting a relationship between brain evolution and vulnerability to disorders affecting cognition and behavior. These results provide novel insights into gene regulatory mechanisms driving the evolution of human cognition and mechanisms of vulnerability to neuropsychiatric conditions.


Assuntos
Córtex Cerebral/embriologia , Epigênese Genética/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encéfalo/embriologia , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Predisposição Genética para Doença , Humanos , Elementos Reguladores de Transcrição/genética
4.
Cell ; 172(1-2): 289-304.e18, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307494

RESUMO

Non-coding regions comprise most of the human genome and harbor a significant fraction of risk alleles for neuropsychiatric diseases, yet their functions remain poorly defined. We created a high-resolution map of non-coding elements involved in human cortical neurogenesis by contrasting chromatin accessibility and gene expression in the germinal zone and cortical plate of the developing cerebral cortex. We link distal regulatory elements (DREs) to their cognate gene(s) together with chromatin interaction data and show that target genes of human-gained enhancers (HGEs) regulate cortical neurogenesis and are enriched in outer radial glia, a cell type linked to human cortical evolution. We experimentally validate the regulatory effects of predicted enhancers for FGFR2 and EOMES. We observe that common genetic variants associated with educational attainment, risk for neuropsychiatric disease, and intracranial volume are enriched within regulatory elements involved in cortical neurogenesis, demonstrating the importance of this early developmental process for adult human cognitive function.


Assuntos
Córtex Cerebral/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Neurônios/metabolismo , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Feminino , Humanos , Masculino , Neurônios/citologia , Polimorfismo Genético , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
5.
Nature ; 538(7626): 523-527, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27760116

RESUMO

Three-dimensional physical interactions within chromosomes dynamically regulate gene expression in a tissue-specific manner. However, the 3D organization of chromosomes during human brain development and its role in regulating gene networks dysregulated in neurodevelopmental disorders, such as autism or schizophrenia, are unknown. Here we generate high-resolution 3D maps of chromatin contacts during human corticogenesis, permitting large-scale annotation of previously uncharacterized regulatory relationships relevant to the evolution of human cognition and disease. Our analyses identify hundreds of genes that physically interact with enhancers gained on the human lineage, many of which are under purifying selection and associated with human cognitive function. We integrate chromatin contacts with non-coding variants identified in schizophrenia genome-wide association studies (GWAS), highlighting multiple candidate schizophrenia risk genes and pathways, including transcription factors involved in neurogenesis, and cholinergic signalling molecules, several of which are supported by independent expression quantitative trait loci and gene expression analyses. Genome editing in human neural progenitors suggests that one of these distal schizophrenia GWAS loci regulates FOXG1 expression, supporting its potential role as a schizophrenia risk gene. This work provides a framework for understanding the effect of non-coding regulatory elements on human brain development and the evolution of cognition, and highlights novel mechanisms underlying neuropsychiatric disorders.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromossomos Humanos/química , Cromossomos Humanos/genética , Regulação da Expressão Gênica no Desenvolvimento , Conformação de Ácido Nucleico , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Cognição , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Neurogênese , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Esquizofrenia/genética , Esquizofrenia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...