Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033729

RESUMO

Food security issues continue to be a challenge in most parts of the globe, especially in sub-Saharan Africa (SSA). Several research attempts on addressing this issue have mainly been on nutrient replenishment using combined nutrient application of organic amendments and mineral fertilizer inputs. However, there is limited information available on the potential mechanisms underlying nutrient interactions associated with co-application of organic amendments and mineral fertilizers. Therefore, this review focuses on the mechanisms underlying crop nutrient interactions, with particular emphasis on improved nutrient synchrony, priming effect, general soil fertility improvement and balanced proportion of nutrients required by crops. Following a brief overview of the mechanisms, the review describes four common pre-determined nutrient ratios required by plants depending on its life cycle, environment and genotypic characteristics in order to attain the crop's maximum genetic potential. The review concludes with the need for future research to understudy mechanisms causing nutrient interaction under cropping systems, so as to apply nutrients at the most appropriate time to synchronize nutrient release with crop uptake, with the utmost goal of promoting sustainable crop production and enhancing food security.


Assuntos
Agricultura , Fertilizantes , Fertilizantes/análise , Solo , Minerais , Nutrientes
2.
J Soil Sci Plant Nutr ; 20(4): 1703-1713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33191974

RESUMO

Low inherent nitrogen (N), phosphorus (P), and potassium (K) contents of smallholder farms limit maize grain yield. Maize grain yield response to N, P, and K mineral fertilizer application and economically optimal rates for nitrogen (EORN), phosphorus (EORP), and potassium (EORK) were evaluated on a Ferric Acrisol within the semi-deciduous forest zone of Ghana. The nutrient rates evaluated were N (0, 30, 60, 90, and 120 kg N ha-1), P (0, 30, 60, and 90 kg ha-1 P2O5), and K (0, 30, 60 and 90 kg ha-1 K2O). The treatments were arranged in a randomized complete block with three replications using an incomplete factorial design. Nutrient responses were determined using asymptotic quadratic-plus plateau functions. The best nitrogen rate for all P and K levels was 60 kg ha-1, which gave grain yield of 5 t ha-1 . Nitrogen uptake, N agronomic and N recovery efficiencies peaked at 60 kg N ha-1 while N partial factor productivity declined with increasing N application rate. Cost to grain price ratios (CP) were 1.29, 1.65, and 1.65 for N, P, and K, respectively. The EORN was 61 kg ha-1, 32% less than the recommended 90 kg N ha-1 for maize production in the semi-deciduous forest zone of Ghana. Nitrogen application had the lowest CP ratio, making its application economically profitable than P and K. The findings suggest that the application of N at 61 kg N ha-1 to maize is economically profitable than at higher application rates. However, further studies should be conducted on farmers' fields to validate the results obtained.

3.
PLoS One ; 13(12): e0208250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566517

RESUMO

Soil erosion is a multifactor threat to crop production and the environment. Most studies on soil erosion characterization have not focused on soil nutrient loss associated with erosion. The aim of this study was therefore to quantify the magnitude of nutrient loss through soil erosion under different cropping systems and amendments to inform agronomic practices in sub-Saharan Africa (SSA). A field experiment was carried out on runoff plots with different cropping systems (sole maize, sole cowpea, sole maize and maize intercropped with soybean) as main plots and soil amendments (biochar, NPK (Nitrogen +Phosphorus +Potassium) fertilizer, NPK + biochar and a control (no amendment)) constituting the subplots in a randomized complete block design. For each block, a bare plot was included to assess the efficiency of the different crop and soil management practices on soil erosion. The study was carried out in three consecutive cropping seasons in the semi-deciduous forest zone of Ghana. The bare plots had the highest amounts of nitrogen (N), phosphorus (P), and potassium (K) eroded: 33.88, 12.35 and 12.75 kg ha-1 respectively followed by the control plots with magnitude of 20.43, 8.42 and 7.87 kg ha-1 respectively for N, P and K. Sole maize had the highest amounts of nutrient loss: 19.71, 8.12 and 7.27 for N, P and K respectively compared to all the other cropping systems where the losses varied respectively from 12.38 to 17.12, 6.67 to 7.49 and 5.81 to 6.75 kg ha-1 The legume-based cropping systems under inorganic fertilizer and biochar management effectively reduced nutrient loss more than all other treatment combinations. The off-site effect of soil erosion expressed as enrichment ratio (ER) was higher for all plots, which received inorganic fertilizer inputs varying from 1.93 to 3.06 while the other treatments had ERs of 1.51 to 2.03. The ERs of fine soil particles were greater than 1 (ranging from 1.14 to 3.6) being relatively higher than that of coarse particles (sand) with values below 1 (ranging from 0.62 to 0.88). The least cumulative monetary value of nutrient loss (30.82 US$ ha-1) was observed under cowpea cropping system which received NPK + BC treatment. Soil erosion affected directly soil nutrient depletion through nutrient loss; however, integrated soil fertility management associated with legume-based cropping systems can be alternative options to reducing its effects on croplands in SSA.


Assuntos
Solo , África Subsaariana , Produtos Agrícolas , Fertilizantes , Gana , Nitrogênio/análise , Fósforo/análise , Potássio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA