Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917115

RESUMO

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ∼0.9 in as little as six-weeks with a mean firing rate of ∼13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of blood-brain barrier breakdown by using human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.


Assuntos
Astrócitos , Diferenciação Celular , Técnicas de Cocultura , Células-Tronco Pluripotentes Induzidas , Neurônios , Humanos , Astrócitos/citologia , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cocultura/métodos , Neurônios/citologia , Neurônios/metabolismo , Células Cultivadas , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Eletrodos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia
2.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496655

RESUMO

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ~0.9 in as little as six-weeks with a mean firing rate of ~13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of sporadic Alzheimer's disease by mimicking blood-brain barrier breakdown using a human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.

3.
Sleep ; 46(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224457

RESUMO

A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.


Assuntos
Fadiga , Motivação , Humanos , Biologia
4.
Curr Biol ; 33(5): R192-R194, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917943

RESUMO

Vaccine failure is a multifactorial global public health problem. A new meta-analysis underscores the role of sleep history as a factor involved in antibody responses to vaccination and subsequent protection against disease.


Assuntos
Vacinas , Saúde Pública , Vacinação , Metanálise como Assunto
5.
Biology (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009868

RESUMO

Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.

6.
Biol Res Nurs ; 23(2): 171-179, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32677464

RESUMO

BACKGROUND: Young to middle-aged women are more likely than men to be diagnosed with irritable bowel syndrome (IBS). Immune dysfunction may be present in IBS, however, few studies have tested whether hormonal contraceptive use is linked to inflammatory markers. The purpose of this study was to compare cytokine levels between women (ages 18-45) with and without IBS and with and without hormonal contraceptive use and to examine the relationships of cytokine levels to IBS gastrointestinal (GI) and non-GI symptoms within those using and not using hormonal contraceptives. METHODS: Seventy-three women with IBS and 47 healthy control women completed questionnaires (demographics, hormonal contraceptive use) and kept a 28-day symptom diary. Fasting plasma and LPS-stimulated pro-inflammatory (IL-1ß, IL-6, IL-12p40, IL-12p70, IL-8, and TNF-α) and anti-inflammatory (IL-10) cytokines were assayed. RESULTS: No differences were found in plasma or stimulated cytokine levels between IBS and control women. Levels of IL-1ß (p = 0.04) and TNF-α (p = 0.02) were higher among women who did not use hormonal contraceptives compared to women who used hormonal contraceptives. Among women with IBS, significant correlations were found between daily psychological distress and plasma IL-10, IL-12p70, IL-1ß, IL-6, and IL-8 cytokine levels. CONCLUSIONS: These results suggest that hormonal contraceptive use might reduce IL-1ß and TNF-α cytokine levels in women with IBS. The impact of hormonal contraceptive use on innate immune activation among women with IBS requires further research.


Assuntos
Anticoncepcionais/uso terapêutico , Citocinas/sangue , Síndrome do Intestino Irritável/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
7.
J Neurotrauma ; 36(5): 802-814, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136622

RESUMO

Traumatic brain injury (TBI) is a major cause of disability worldwide. Post-TBI sleep and wake disturbances are extremely common and difficult for patients to manage. Sleep and wake disturbances contribute to poor functional and emotional outcomes from TBI, yet effective therapies remain elusive. A more comprehensive understanding of mechanisms underlying post-TBI sleep and wake disturbance will facilitate development of effective pharmacotherapies. Previous research in human patients and animal models indicates that altered hypocretinergic function may be a major contributor to sleep-wake disturbance after TBI. In this study, we further elucidate the role of hypocretin by determining the impact of TBI on sleep-wake behavior of hypocretin knockout (HCRT KO) mice. Adult male C57BL/6J and HCRT KO mice were implanted with electroencephalography recording electrodes, and pre-injury baseline recordings were obtained. Mice were then subjected to either moderate TBI or sham surgery. Additional recordings were obtained and sleep-wake behavior determined at 3, 7, 15, and 30 days after TBI or sham procedures. At baseline, HCRT KO mice had a significantly different sleep-wake phenotype than control C57BL/6J mice. Post-TBI sleep-wake behavior was altered in a genotype-dependent manner: sleep of HCRT KO mice was not altered by TBI, whereas C57BL/6J mice had more non-rapid eye movement sleep, less wakefulness, and more short wake bouts and fewer long wake bouts. Numbers of hypocretin-positive cells were reduced in C57BL/6J mice by TBI. Collectively, these data indicate that the hypocretinergic system is involved in the alterations in sleep-wake behavior that develop after TBI in this model, and suggest potential therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Orexinas/metabolismo , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Artigo em Inglês | MEDLINE | ID: mdl-29732438

RESUMO

Chronic insufficient sleep is a major societal problem and is associated with increased risk of metabolic disease. Hypothalamic inflammation contributes to hyperphagia and weight gain in diet-induced obesity, but insufficient sleep-induced neuroinflammation has yet to be examined in relation to metabolic function. We therefore fragmented sleep of adult male C57BL/6J mice for 18 h daily for 9 days to determine whether sleep disruption elicits inflammatory responses in brain regions that regulate energy balance and whether this relates to glycemic control. To additionally test the hypothesis that exposure to multiple inflammatory factors exacerbates metabolic outcomes, responses were compared in mice exposed to sleep fragmentation (SF), high-fat diet (HFD), both SF and HFD, or control conditions. Three or 9 days of high-fat feeding reduced glucose tolerance but SF alone did not. Transient loss of body mass in SF mice may have affected outcomes. Comparisons of pro-inflammatory cytokine concentrations among central and peripheral metabolic tissues indicate that patterns of liver interleukin-1ß concentrations best reflects observed changes in glucose tolerance. However, we demonstrate that SF rapidly and potently increases Iba1 immunoreactivity (-ir), a marker of microglia. After 9 days of manipulations, Iba1-ir remains elevated only in mice exposed to both SF and HFD, indicating a novel interaction between sleep and diet on microglial activation that warrants further investigation.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31236496

RESUMO

Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI), with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH), hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6-10/group) were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6-8/group) were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases NREM sleep during the dark period, effects that may be mediated by hypocretin-producing neurons and/or downstream cholinergic effectors in the basal forebrain.

10.
Neuropsychopharmacology ; 42(1): 129-155, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27510422

RESUMO

Sleep disturbances including insomnia independently contribute to risk of inflammatory disorders and major depressive disorder. This review and overview provides an integrated understanding of the reciprocal relationships between sleep and the innate immune system and considers the role of sleep in the nocturnal regulation of the inflammatory biology dynamics; the impact of insomnia complaints, extremes of sleep duration, and experimental sleep deprivation on genomic, cellular, and systemic markers of inflammation; and the influence of sleep complaints and insomnia on inflammaging and molecular processes of cellular aging. Clinical implications of this research include discussion of the contribution of sleep disturbance to depression and especially inflammation-related depressive symptoms. Reciprocal action of inflammatory mediators on the homeostatic regulation of sleep continuity and sleep macrostructure, and the potential of interventions that target insomnia to reverse inflammation, are also reviewed. Together, interactions between sleep and inflammatory biology mechanisms underscore the implications of sleep disturbance for inflammatory disease risk, and provide a map to guide the development of treatments that modulate inflammation, improve sleep, and promote sleep health.


Assuntos
Imunidade Inata/imunologia , Inflamação/imunologia , Transtornos do Sono-Vigília/imunologia , Sono/fisiologia , Animais , Humanos
11.
Neurobiol Stress ; 3: 105-113, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27981183

RESUMO

Repeated bouts of a major stressor such as social defeat are well known to induce a depression phenotype in male rats. Despite strong evidence and acknowledgement that women have a two-fold lifetime greater risk of developing major depression compared to men, the inclusion of female rats in studies employing social defeat are very rare; their absence is attributed to less aggressive interactions. This study sought to compare in male and female rats the impact of repeated social defeat, three times per week for four weeks, on the development of changes in sleep architecture and continuity, sucrose preference as a measure of anhedonia, changes in body weight, and basal plasma corticosterone levels. We found significant reductions in rapid eye movement sleep (REMS) during the light phase in both females and males, and significant increases in numbers of vigilance state transitions during the early dark phase in females but not in males. Additionally, females exhibited significantly greater reductions in sucrose intake than males. On the other hand, no sex differences in significantly elevated basal corticosterone levels were evident, and only the males exhibited changes in body weight. Taken together these findings suggest that the inclusion of female rats in studies of social defeat may offer greater insights in studies of stress and depression.

12.
Psychoneuroendocrinology ; 68: 47-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26943344

RESUMO

Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this sleep phase contributes to restorative effects of recovery sleep on glycemic control.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Privação do Sono/metabolismo , Animais , Eletroencefalografia , Teste de Tolerância a Glucose , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fases do Sono/fisiologia , Sono REM/fisiologia
13.
Glia ; 64(5): 780-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26775112

RESUMO

Sleep-wake behavior is altered in response to immune challenge. Although the precise mechanisms that govern sickness-induced changes in sleep are not fully understood, interleukin-1ß (IL-1) is one mediator of these responses. To better understand mechanisms underlying sleep and inflammatory responses to immune challenge, we used two transgenic mouse strains that express IL-1 receptor 1 (IL1R1) only in the central nervous system and selectively on neurons or astrocytes. Electroencephalographic recordings from transgenic and wild-type mice reveal that systemic challenge with lipopolysaccharide (LPS) fragments sleep, suppresses rapid eye movement sleep (REMS), increases non-REMS (NREMS), diminishes NREM delta power, and induces fever in all genotypes. However, the magnitude of REMS suppression is greater in mice expressing IL1R1 on astrocytes compared with mice in which IL1R1 is selectively expressed on neurons. Furthermore, there is a delayed increase in NREM delta power when IL1R1 is expressed on astrocytes. LPS-induced sleep fragmentation is reduced in mice expressing IL1R1 on neurons. Although LPS increases IL-1 and IL-6 in brain of all genotypes, this response is attenuated when IL1R1 is expressed selectively on neurons or on astrocytes. Collectively, these data suggest that in these transgenic mice under the conditions of this study it is neuronal IL1R1 that plays a greater role in LPS-induced suppression of REMS and NREM delta power, whereas astroglial IL1R1 is more important for sleep fragmentation after this immune challenge. Thus, aspects of central responses to LPS are modulated by IL1R1 in a cell type-specific manner.


Assuntos
Astrócitos/metabolismo , Imunomodulação/efeitos dos fármacos , Neurônios/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Sono/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Eletroencefalografia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/genética , Sono/genética
14.
J Neuroinflammation ; 12: 154, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329692

RESUMO

BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases. METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury. RESULTS: During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1(-/-) mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1(-/-) mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1(-/-) mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFß. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI. CONCLUSION: Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes.


Assuntos
Lesões Encefálicas , Encéfalo/patologia , Receptores de Quimiocinas/metabolismo , Análise de Variância , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Citometria de Fluxo , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leucócitos Mononucleares/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Transtornos Psicomotores/etiologia , Receptores de Quimiocinas/genética , Teste de Desempenho do Rota-Rod , Fatores de Tempo
15.
Brain Behav Immun ; 50: 259-265, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218294

RESUMO

The factors by which aging predisposes to critical illness are varied, complex, and not well understood. Sepsis is considered a quintessential disease of old age because the incidence and mortality of severe sepsis increases in old and the oldest old individuals. Aging is associated with dramatic changes in sleep quality and quantity and sleep increasingly becomes fragmented with age. In healthy adults, sleep disruption induces inflammation. Multiple aspects of aging and of sleep dysregulation interact via neuroimmune mechanisms. Tumor necrosis factor-α (TNF), a cytokine involved in sleep regulation and neuroimmune processes, exerts some of its effects on the CNS by crossing the blood-brain barrier (BBB). In this study we examined the impact of sepsis, sleep fragmentation, and aging on BBB disruption and TNF transport into brain. We used the cecal ligation and puncture (CLP) model of sepsis in young and aged mice that were either undisturbed or had their sleep disrupted. There was a dichotomous effect of sepsis and sleep disruption with age: sepsis disrupted the BBB and increased TNF transport in young mice but not in aged mice, whereas sleep fragmentation disrupted the BBB and increased TNF transport in aged mice, but not in young mice. Combining sleep fragmentation and CLP did not produce a greater effect on either of these BBB parameters than did either of these manipulations alone. These results suggest that the mechanisms by which sleep fragmentation and sepsis alter BBB functions are fundamentally different from one another and that a major change in the organism's responses to those insults occurs with aging.


Assuntos
Envelhecimento , Barreira Hematoencefálica/metabolismo , Sepse/metabolismo , Sono , Fator de Necrose Tumoral alfa/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Brain Behav Immun ; 48: 244-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25849975

RESUMO

Interactions between sleep and immune function are bidirectional. Although the mechanisms that govern these interactions are not fully elucidated, the pro-inflammatory cytokine, interleukin-1ß (IL-1), is a known regulator of sleep and mediator of immune responses. To further clarify the underlying substrates of sleep and immune interactions, we engineered two transgenic mouse lines that express interleukin-1 receptor 1 (IL1R1) only in the central nervous system (CNS) and selectively on neurons (NSE-IL1R1) or astrocytes (GFAP-IL1R1). During spontaneous sleep, compared to wild type (WT) animals, NSE-IL1R1 and GFAP-IL1R1 mice have more rapid eye movement sleep (REMS) that is characterized by reduced theta power in the electroencephalogram (EEG) spectra. The non-REM sleep (NREMS) EEG of each of the IL1R1 transgenic mouse strains also is characterized by enhanced power in the delta frequency band. In response to 6h of sleep deprivation, sleep of both IL1R1 transgenic mouse strains is more consolidated than that of WT animals. Additionally, the NREMS EEG of NSE-IL1R1 mice contains less delta power after sleep deprivation, suggesting astroglial IL1R1 activity may modulate sleep homeostasis. Intracerebroventricular injection of IL-1 fails to alter sleep or brain temperature of NSE-IL1R1 or GFAP-IL1R1 mice. These data suggest that selective IL1R1 expression on neurons or on astrocytes is not sufficient for centrally-administered IL-1 to induce sleep or fever. Lack of sleep and febrile responses to IL-1 in these IL1R1 transgenic mouse strains may be due to their inability to produce IL-6 in brain. Overall, these studies demonstrate, through the use of novel transgenic mice, that IL1R1 on neurons and astrocytes differentially mediates aspects of sleep under physiological conditions and in response to central IL-1 administration.


Assuntos
Astrócitos/fisiologia , Neurônios/fisiologia , Receptores de Interleucina-1/metabolismo , Sono/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Eletroencefalografia , Interleucina-1/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Receptores de Interleucina-1/genética , Sono/efeitos dos fármacos
18.
Biol Res Nurs ; 17(2): 207-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25037450

RESUMO

Society has a rapidly growing accumulative sleep debt due to employment obligations and lifestyle choices that limit sleep opportunities. The degree to which poor sleep may set the stage for adverse symptom outcomes among more than 1.7 million persons who will be diagnosed with cancer is not entirely understood. Paclitaxel (PAC), a commonly used chemotherapy agent, is associated with painful, debilitating peripheral neuropathy of the hands and feet, which may persist long after adjuvant therapy is completed. The aims of this preclinical study were to determine the accumulative and sustained effects of sleep restriction on PAC-induced mechanical sensitivity in animals and whether there are male-female differences in mechanical sensitivity in PAC-injected animals. Sixty-two adult Sprague-Dawley rats (n = 31 females) were assigned to three cycles of intraperitoneal injections of PAC (1 mg/kg) versus vehicle (VEH; 1 ml/kg) every other day at light onset for 7 days, followed by seven drug-free days and to sleep restriction versus unperturbed sleep. Sleep restriction involved gentle handling to maintain wakefulness during the first 6 hr of lights on immediately following an injection; otherwise, sleep was unperturbed. Mechanical sensitivity was assessed via von Frey filaments, using the up-down method. Mechanical sensitivity data were Log10 transformed to meet the assumption of normality for repeated measures analysis of variance. Chronic sleep restriction of the PAC-injected animals resulted in significantly increased mechanical sensitivity that progressively worsened despite sleep recovery opportunities. If these relationships hold in humans, targeted sleep interventions employed during a PAC protocol may improve pain outcomes.


Assuntos
Paclitaxel/farmacologia , Estimulação Física , Vigília , Animais , Feminino , Masculino , Dor , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
19.
Brain Behav Immun ; 47: 35-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25449578

RESUMO

Interleukin-1ß (IL1) is involved in sleep regulation and sleep responses induced by influenza virus. The IL1 receptor accessory protein (AcP) and an alternatively spliced isoform of AcP found primarily in neurons, AcPb, form part of the IL1 signaling complex. IL1-induced sleep responses depend on injection time. In rat cortex, both IL1 mRNA and AcPb mRNA peak at Zeitgeber Time (ZT) 0 then decline over the daylight hours. Sleep deprivation enhances cortical IL1 mRNA and AcPb mRNA levels, but not AcP mRNA. We used wild type (WT) and AcPb knockout (KO) mice and performed sleep deprivation between ZT10 and 20 or between ZT22 and 8 based on the time of day expression profiles of AcPb and IL1. We hypothesized that the magnitude of the responses to sleep loss would be strain- and time of day-dependent. In WT mice, NREMS and REMS rebounds occurred regardless of when they were deprived of sleep. In contrast, when AcPbKO mice were sleep deprived from ZT10 to 20 NREMS and REMS rebounds were absent. The AcPbKO mice expressed sleep rebound if sleep loss occurred from ZT22 to 8 although the NREMS responses were not as robust as those that occurred in WT mice. We also challenged mice with intranasal H1N1 influenza virus. WT mice exhibited the expected enhanced sleep responses. In contrast, the AcPbKO mice had less sleep after influenza challenge compared to their own baseline values and compared to WT mice. Body temperature and locomotor activity responses after viral challenge were lower and mortality was higher in AcPbKO than in WT mice. We conclude that neuron-specific AcPb plays a critical role in host defenses and sleep homeostasis.


Assuntos
Homeostase/fisiologia , Vírus da Influenza A Subtipo H1N1 , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Neurônios/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Temperatura Corporal/imunologia , Temperatura Corporal/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/virologia , Homeostase/imunologia , Proteína Acessória do Receptor de Interleucina-1/genética , Camundongos , Camundongos Knockout , Atividade Motora/imunologia , Atividade Motora/fisiologia , Neurônios/virologia , Sono/imunologia , Privação do Sono/virologia
20.
Brain Behav Immun ; 44: 213-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449670

RESUMO

Musculoskeletal pain is a widespread health problem in the United States. Back pain, neck pain, and facial pain are three of the most prevalent types of chronic pain, and each is characterized as musculoskeletal in origin. Despite its prevalence, preclinical research investigating musculoskeletal pain is limited. Musculoskeletal sensitization is a preclinical model of muscle pain that produces mechanical hypersensitivity. In a rodent model of musculoskeletal sensitization, mechanical hypersensitivity develops at the hind paws after injection of acidified saline (pH 4.0) into the gastrocnemius muscle. Inflammatory cytokines contribute to pain during a variety of pathologies, and in this study we investigate the role of local, intramuscular cytokines in the development of mechanical hypersensitivity after musculoskeletal sensitization in mice. Local intramuscular concentrations of interleukin-1ß (IL-1), IL-6 and tumor necrosis factor-α (TNF) were quantified following injection of normal (pH 7.2) or acidified saline into the gastrocnemius muscle. A cell-permeable inhibitor was used to determine the impact on mechanical hypersensitivity of inhibiting nuclear translocation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) prior to musculoskeletal sensitization. The role of individual cytokines in mechanical hypersensitivity following musculoskeletal sensitization was assessed using knockout mice lacking components of the IL-1, IL-6 or TNF systems. Collectively, our data demonstrate that acidified saline injection increases intramuscular IL-1 and IL-6, but not TNF; that intramuscular pre-treatment with an NF-κB inhibitor blocks mechanical hypersensitivity; and that genetic manipulation of the IL-1 and IL-6, but not TNF systems, prevents mechanical hypersensitivity following musculoskeletal sensitization. These data establish that actions of IL-1 and IL-6 in local muscle tissue play an acute regulatory role in the development of mechanical hypersensitivity following musculoskeletal sensitization.


Assuntos
Hiperalgesia/metabolismo , Mialgia/metabolismo , Miosite/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético , Mialgia/induzido quimicamente , Miosite/induzido quimicamente , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...