Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(3): 1248-1255, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31664769

RESUMO

Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus-like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions.

2.
Angew Chem Int Ed Engl ; 57(38): 12280-12284, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30070009

RESUMO

The in situ nanoscopic imaging of soft matter polymer structures is of importance to gain knowledge of the relationship between structure, properties, and functionality on the nanoscopic scale. Cross-linking of polymer chains effects the viscoelastic properties of gels. The correlation of mechanical properties with the distribution and amount of cross-linkers is relevant for applications and for a detailed understanding of polymers on the molecular scale. We introduce a super-resolution fluorescence-microscopy-based method for visualizing and quantifying cross-linker points in polymer systems. A novel diarylethene-based photoswitch with a highly fluorescent closed and a non-fluorescent open form is used as a photoswitchable cross-linker in a polymer network. As an example for its capability to nanoscopically visualize cross-linking, we investigate pNIPAM microgels as a system known with variations in internal cross-linking density.

3.
Langmuir ; 34(12): 3597-3603, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29502414

RESUMO

Photoinduced size changes in microgel particles loaded with gold nanoparticles (AuNPs) were investigated with an extended multiangle dynamic light scattering (DLS) setup. The DLS setup was equipped with a conventional laser (λ = 633 nm) to determine the microgel particle size. Additionally, a laser (λ = 532 nm) is installed to study the photoresponsive behavior of the AuNP-microgel hybrids. The wavelength of 532 nm is close to the absorption maximum of the plasmon resonance of the AuNPs used in the present study (i.e. spherical AuNPs with a diameter of 14 nm). The extended DLS setup enables us to follow in situ the change in microgel size during irradiation. The light stimulus is directly correlated with the size changes of the hybrid particles and the photothermal effect depends on the intensity of the excitation laser. The increase in excitation laser intensity results in a size reduction of hybrid particles because of the ability of AuNPs to partially transform the absorbed photon energy into heat which is emitted into the surrounding microgel network.

4.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29325203

RESUMO

Super-resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super-resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super-resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task.

5.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024083

RESUMO

Near-equilibrium stimulus-responsive polymers have been used extensively to introduce morphological variations in dependence of adaptable conditions. Far-less-well studied are triggered transformations at constant conditions. These require the involvement of metastable states, which are either able to approach the equilibrium state after deviation from metastability or can be frozen on returning from nonequilibrium to equilibrium. Such functional nonequilibrium macromolecular systems hold great promise for on-demand transformations, which result in substantial changes in their material properties, as seen for triggered gelations. Herein, a diblock copolymer system consisting of a hydrophilic block and a block that is responsive to both pressure and temperature, is introduced. This species demonstrates various micellar transformations upon leaving equilibrium/nonequilibrium states, which are triggered by a temperature deflection or a temporary application of hydrostatic pressure.

6.
Biomacromolecules ; 18(9): 2789-2798, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28745493

RESUMO

In this work we explored an enzyme-mediated method for selective and efficient decoration of aqueous microgels with biomolecules. Poly(N-vinylcaprolactam) (VCL) microgels with varied amounts of glycidyl methacrylate (GMA) as comonomer incorporated in the microgel shell were synthesized and characterized in regard to their size, swelling degree, and temperature-responsiveness in aqueous solutions. The surface of the PVCL/GMA microgel containing 5 mol % glycidyl methyacrylate was modified by grafting of a specific recognition peptide sequence (LPETG) for Sortase A from Staphylococcus aureus (Sa-SrtAΔ59). Sortase-mediated conjugation of the enhanced Green Fluorescent Protein (eGFP) carrying a N-terminal triglycine tag to LPETG-modified microgels was successfully performed. Conjugation of eGFP to the microgel surface was qualitatively proven by confocal microscopy and by fluorescence intensity measurements. The developed protocol enables a precise control of the amount of eGFP grafted to the microgel surface as evidenced by the linear increase of fluorescence intensity of modified microgel samples. The kinetic of the sortase-mediated coupling reaction was determined by time-dependent fluorescence intensity measurements. In summary, sortase-mediated coupling reactions are a simple and powerful technique for targeted surface functionalization of stimuli-responsive microgels with biomolecules.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Caprolactama/análogos & derivados , Cisteína Endopeptidases/metabolismo , Hidrogéis/síntese química , Polímeros/química , Aminoaciltransferases/química , Proteínas de Bactérias/química , Sítios de Ligação , Caprolactama/química , Cisteína Endopeptidases/química , Proteínas de Fluorescência Verde/química , Hidrogéis/química , Metacrilatos/química , Fragmentos de Peptídeos/química , Staphylococcus aureus/enzimologia
7.
Nano Lett ; 16(11): 7295-7301, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27701865

RESUMO

Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multifunctionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy. We unravel new levels of structural details and address the challenge of reconstructing 3D information from 2D projections for nonuniform soft matter as opposed to monodisperse proteins. Moreover, we visualize the thermally induced shrinkage of responsive core-shell microgels live in water. This strategy opens doors for systematic in situ studies of soft matter systems and their application as smart materials.

8.
Angew Chem Int Ed Engl ; 55(41): 12698-702, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27619176

RESUMO

The in situ imaging of soft matter is of paramount importance for a detailed understanding of functionality on the nanoscopic scale. Although super-resolution fluorescence microscopy methods with their unprecedented imaging capabilities have revolutionized research in the life sciences, this potential has been far less exploited in materials science. One of the main obstacles for a more universal application of super-resolved fluorescence microscopy methods is the limitation of readily available suitable dyes to overcome the diffraction limit. Here, we report a novel diarylethene-based photoswitch with a highly fluorescent closed and a nonfluorescent open form. Its photophysical properties, switching behavior, and high photostability make the dye an ideal candidate for photoactivation localization microscopy (PALM). It is capable of resolving apolar structures with an accuracy far beyond the diffraction limit of optical light in cylindrical micelles formed by amphiphilic block copolymers.

9.
J Mater Chem B ; 4(47): 7572-7583, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263814

RESUMO

In this study, thermal and redox dual sensitive nanogels based on N-vinylcaprolactam (VCL) and N-succinimidyl methacrylate (Suma) crosslinked with diallyl disulfide were synthesized via a facile and straightforward method. The reactive succinimide groups were mainly located in the nanogel shell which increases considerably their accessibility for conjugation reactions. Doxorubicin (DOX) was successfully loaded into the nanogel through two different routes. Approximately 91.3% of DOX molecules were covalently bound to the nanogel network via coupling with succinimide groups under mild conditions to obtain prodrug nanogels, while 8.7% of DOX molecules were captured into the nanogels via electrostatic interactions with the -COOH group from the hydrolyzed ester groups of the nanogels. The DOX-loaded nanogels demonstrated volume phase transition temperature (VPTT) near human physiological temperature. The nanogels shrink near body temperature, which could help lock the drug molecules stably in blood circulation. The conjugation of DOX molecules in nanogels avoided premature unspecific drug release under physiological conditions. The small amount of physically loaded DOX (due to electrostatic interactions) could be partially released as free DOX due to the increasing acidic conditions in the endosome/lysosome pathway. The chemically conjugated DOX was released in the form of a prodrug polymer triggered by the high concentration of glutathione in the cytosol that induced nanogel degradation. The present drug delivery system exhibits a sustainable delivery profile in the intracellular release study and high antitumor activity. We are convinced that the thermal and reduction dual-responsive prodrug nanogels have tremendous potential in controlled drug release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...