Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 238: 113535, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35526315

RESUMO

In this paper we perform angular resolved annular-dark field (ADF) scanning-transmission electron microscopy (STEM) to study the scattered intensity in an InGaN layer buried in GaN as a function of the scattering angle. We achieved angular resolution with a motorized iris aperture in front of the ADF detector. Using this setup, we investigated how the intensities measured in various angular ranges agree with multislice simulations in the frozen-lattice approximation. We observed a strong influence of relaxation induced surface-strain fields on the ADF intensity, measured its angular characteristics and compared the result with simulations. To assess the agreement of the measured intensity with simulations, we evaluated the specimen thickness in GaN and the indium concentration in InGaN for each angular interval by comparing the measured intensities with simulations. The thickness was strongly overestimated for scattering angles below 40mrad and also the evaluated indium concentration varies with the considered angular range. Using simulations, we investigated which angular ranges show a high sensitivity to variations of the thickness and which intervals strongly depend on the indium concentration. By combining two angular intervals, the indium concentration and the specimen thickness were determined simultaneously, which has potential advantages over the usual quantification method. It is shown that inelastic scattering, surface contamination and mistilt can have an influence on the measured intensity, especially at lower scattering angles below 30-50mrad, which might explain the observed difference between the frozen lattice simulation and the experiment.

2.
Ultramicroscopy ; 223: 113221, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588232

RESUMO

Modern quantitative TEM methods such as the ζ-factor technique require precise knowledge of the electron beam current. To this end, a macroscopic Faraday cup was designed and constructed. It can replace the viewing screen in the projection chamber of a TEM and guarantees highly accurate measurement of the electron beam with precision only limited by the used amperemeter. The easy to install, affordable device is shown to be highly apt for precision measurement of currents >5pA. The Faraday cup results are used for an assessment and a comparison of various other beam current measurement methods. It is found that the built-in screen amperemeter of the used TEM is quite inaccurate and that measurements using the screen in general tend to underestimate the current. If present, the drift tube of a spectrometer can also be used as a Faraday cup, but certain described peculiarities have to be taken into account. Direct ultrafast electron detection cameras allow precise measurement at very small currents. For the electron counting technique, which exploits single electron detection capabilities of STEM detectors, a systematic current underestimation was observed and investigated. This results in a reformulated routine for the method and with these improvements it is demonstrated to be capable of accurate high-precision measurements for currents <5pA.

3.
Ultramicroscopy ; 221: 113175, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383361

RESUMO

The angle-resolved electron scattering is investigated in scanning-transmission electron microscopy (STEM) using a motorised iris aperture placed above a conventional annular detector. The electron intensity scattered into various angle ranges is compared with simulations that were carried out in the frozen-lattice approximation. As figure of merit for the agreement of experiment and simulation we evaluate the specimen thickness which is compared with the thickness obtained from position-averaged convergent beam electron diffraction (PACBED). We find deviations whose strengths depend on the angular range of the detected electrons. As possible sources of error we investigate, for example, the influences of amorphous surface layers, inelastic scattering (plasmon excitation), phonon-correlation within the frozen-lattice approach, and distortions in the diffraction plane of the microscope. The evaluation is performed for four experimental thicknesses and two angle-resolved STEM series under different camera lengths. The results clearly show that especially for scattering angles below 50 mrad, it is mandatory that the simulations take scattering effects into account which are usually neglected for simulating high-angle scattering. Most influences predominantly affect the low-angle range, but also high scattering angles can be affected (e.g. by amorphous surface covering).

4.
Sci Rep ; 6: 37146, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27849001

RESUMO

Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

5.
Exp Toxicol Pathol ; 56(3): 159-71, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15625785

RESUMO

The aim of this work was to compare the results of histochemical and immunohistochemical methods using mouse brains which were fixed with various post-mortem delays and storage temperatures (at a constant 4 degrees C or 22 degrees C, or at gradually decreasing post-mortem temperatures, mimicking conditions of human corpse). We studied the effects of post-mortem delay on glial fibrillary acidic protein, extracellular matrix components to which Wisteria floribunda agglutinin binds, non-phosphorylated neurofilament H, synaptophysin, calbindin and nitric oxide synthase isoenzymes. At the light microscopic level first signs of post-mortem changes were detectable after 6 h. Glial fibrillary acidic protein was most affected by post-mortem delay since its immunoreactivity increased dramatically with increasing post-mortem delay. N-acetylgalactosamines-beta1 labeled lectin binding sites, calbindin and intraneuronal non-phosphorylated neurofilament H seemed to be stable up to 12 h post-mortem. Storage temperature influenced the NADPH-d activity and the content of synaptophysin immunoreactivity to higher degree than all of the other parameters. We found only marginal differences of alterations comparing neocortex, hippocampus and corpus callosum. Our results indicate that different antigens are affected differently by the ongoing catabolic processes during post-mortem delay.


Assuntos
Antígenos/metabolismo , Temperatura Corporal , Encéfalo/metabolismo , Técnicas Imunoenzimáticas/métodos , Preservação de Órgãos , Animais , Antígenos/análise , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/imunologia , Química Encefálica , Temperatura Baixa , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida/química , Proteína Glial Fibrilar Ácida/imunologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neurofilamentos/química , Proteínas de Neurofilamentos/imunologia , Proteínas de Neurofilamentos/metabolismo , Mudanças Depois da Morte , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...