Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2308454120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956279

RESUMO

Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na+ binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na+ binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na+. Quantifying the thermodynamic stability while titrating Na+ indicates that dimerization occurs first, providing a membrane-embedded binding site where Na+ binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na+ binding, result in channel activation.


Assuntos
Fluoretos , Bicamadas Lipídicas , Dimerização , Bicamadas Lipídicas/química , Canais Iônicos/metabolismo , Sítios de Ligação
2.
Antioxidants (Basel) ; 12(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001804

RESUMO

Polyphenols have a variety of phenolic hydroxyl and carbonyl functionalities that enable them to scavenge many oxidants, thereby preserving the human redox balance and preventing a number of oxidative stress-related chronic degenerative diseases. In our ongoing investigation of polyphenol-rich plants in search of novel molecules, we resumed the investigation of Lawsonia inermis L. (Lythraceae) or henna, a popular ancient plant with aesthetic and therapeutic benefits. The leaves' 70% aq acetone extract was fractionated on a Diaion HP-20 column with different ratios of H2O/an organic solvent. Multistep gel chromatographic fractionation and HPLC purification of the Diaion 75% aq MeOH and MeOH fractions led to a new compound (1) along with tannin-related metabolites, benzoic acid (2), benzyl 6'-O-galloyl-ß-D-glucopyranoside (3), and ellagic acid (4), which are first isolated from henna. Repeating the procedures on the Diaion 50% aq MeOH eluate led to the first-time isolation of two O-glucosidic ellagitannins, heterophylliin A (5), and gemin D (6), in addition to four known C-glycosidic ellagitannins, lythracin D (7), pedunculagin (8), flosin B (9), and lagerstroemin (10). The compound structures were determined through intensive spectroscopic investigations, including HRESIMS, 1D (1H and 13C) and 2D (1H-1H COSY, HSQC, HMBC, and NOESY) NMR, UV, [α]D, and CD experiments. The new structure of 1 was determined to be a megastigmane glucoside gallate; its biosynthesis from gallic acid and a ß-ionone, a degradative product of the common metabolite ß-carotin, was highlighted. Cytotoxicity investigations of the abundant ellagitannins revealed that lythracin D2 (7) and pedunculagin (8) are obviously more cytotoxic (tumor specificity = 2.3 and 2.8, respectively) toward oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22) than normal human oral cells (HGF, HPC, and HPLF). In summary, Lawsonia inermis is a rich source of anti-oral cancer ellagitannins. Also, the several discovered polyphenolics highlighted here emphasize the numerous biological benefits of henna and encourage further clinical studies to profit from their antioxidant properties against oxidative stress-related disorders.

3.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36789410

RESUMO

Many ion channels are multi-subunit complexes with a polar permeation pathway at the oligomeric interface, but their mechanisms of assembly into functional, thermodynamically stable units within the membrane are largely unknown. Here we characterize the assembly of the inverted-topology, homodimeric fluoride channel Fluc, leveraging a known mutation, N43S, that weakens Na + binding to the dimer interface, thereby unlocking the complex. While single-channel recordings show Na + is required for activation, single-molecule photobleaching and bulk Förster Resonance Energy Transfer experiments in lipid bilayers demonstrate that N43S Fluc monomers and dimers exist in dynamic equilibrium, even without Na + . Molecular dynamics simulations indicate this equilibrium is dominated by a differential in the lipid-solvation energetics of monomer and dimer, which stems from hydrophobic exposure of the polar ion pathway in the monomer. These results suggest a model wherein membrane-associated forces induce channel assembly while subsequent factors, in this case Na + binding, result in channel activation. Teaser: Membrane morphology energetics foster inverted-topology Fluc channels to form dimers, which then become active upon Na + binding.

4.
Fitoterapia ; 164: 105360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423882

RESUMO

An ellagitannin monomer, lythracin M (1), and a dimer, lythracin D (2), along with eight known monomers (3-10) were isolated from Lawsonia inermis (Lythraceae) leaves. Lythracin M (1) is a C-glycosidic ellagitannin with a flavogallonyl dilactone moiety that participates in the creation of a γ-lactone ring with the anomeric carbon of the glucose core. Lythracin D (2) was determined as an atropisomer of the reported lythcarin D. These newly discovered structures (1 and 2) were determined by intensive spectroscopic experiments and by comparing DFT-calculated 1H1H coupling, 1H NMR chemical shifts, and ECD data with experimental values. The anti-acetylcholinesterase assay of the compounds 1-10 revealed that the C-1 ellagitannin epimers [casuarinin (7; IC50 = 34 ± 2 nM) and stachyurin (8; IC50 = 56 ± 3 nM)], and the new dimer (2; IC50 = 61 ± 4 nM) possess enzyme inhibitory effects comparable to the reference drug (donepezil, IC50 = 44 ± 3 nM). Molecular docking of compounds 1-10 with AChE identified the free galloyl moiety as an important pharmacophore in the anticholinesterase activity of tannins.


Assuntos
Taninos Hidrolisáveis , Lawsonia (Planta) , Lawsonia (Planta)/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Teoria da Densidade Funcional , Estrutura Molecular
5.
J Chem Theory Comput ; 17(10): 6240-6261, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516741

RESUMO

The nonpolarizable CHARMM force field is one of the most widely used energy functions for all-atom biomolecular simulations. Chloride is the only halide ion included in the latest version, CHARMM36m, and is used widely in simulation studies, often as an electrolyte ion but also as the biological substrate of transport proteins and enzymes. Here, we find that existing parameters systematically underestimate the interaction of Cl- with proteins and lipids. Accordingly, when examined in solution, little to no Cl-association can be observed with most components of the protein, including backbone, polar side chains and aromatic rings. The strength of the interaction with cationic side chains and with alkali ions is also incongruent with experimental measurements, specifically osmotic coefficients of concentrated solutions. Consistent with these findings, a 4-µs trajectory of the Cl--specific transport protein CLC-ec1 shows irreversible Cl- dissociation from the so-called Scen binding site, even in a 150 mM NaCl buffer. To correct for these deficiencies, we formulate a series of pair-specific Lennard-Jones parameters that override those resulting from the conventional Lorentz-Berthelot combination rules. These parameters, referred to as NBFIX, are systematically calibrated against available experimental data as well as ab initio geometry optimizations and energy evaluations, for a wide set of binary and ternary Cl- complexes with protein and lipid analogs and alkali cations. Analogously, we also formulate parameter sets for the other three biological halide ions, namely, fluoride, bromide, and iodide. The resulting parameters are used to calculate the potential of mean force defining the interaction of each anion and each of the protein and lipid analogues in bulk water, revealing association free energies in the range of -0.3 to -3.3 kcal/mol, with the F- complexes being the least stable. The NBFIX corrections also preserve the Cl- occupancy of CLC-ec1 in a second 4-µs trajectory. We posit that these optimized molecular-mechanics models provide a more realistic foundation for all-atom simulation studies of processes entailing changes in hydration, recognition, or transport of halide anions.


Assuntos
Álcalis , Cloretos , Lipídeos/química , Proteínas/química , Ânions/química , Cátions/química , Fluoretos/química , Simulação de Dinâmica Molecular , Termodinâmica
6.
J Phys Chem A ; 125(14): 2885-2894, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819036

RESUMO

Organic dyes have shown high efficiencies in solar cells, which is mainly attributed to the push-pull strategy present in such dyes upon attaching to the semiconductor surfaces. We deeply studied the fundamental photophysical properties of cyanoacrylic dyes, mostly the L1 dye, and found unique emission properties that depend on many factors such as the solvent polarity and the concentration of the dye and could present a complete emission picture about this family of dyes. The L1 dye shows an intramolecular charge transfer (ICT) emission state at low concentrations (approximately nanomolar scale) and shows a twisted intramolecular charge transfer (TICT) emission state in specific solvents upon increasing the concentration to the micromolar scale. Moreover, the associated emission lifetimes of the ICT and TICT states of the L1 dye depend on solvent basicity, highlighting the role of hydrogen bond formation on controlling such states. Density functional theory calculations are performed to gain insight into the photophysical properties of the dye and revealed that H-bonding between the carboxylic groups triggers the dimerization at low concentrations. Using femtosecond transient absorption, we assigned the rate of TICT formation to be in the range (160-650 fs)-1, depending on the size of the studied cyanoacrylic dye. Therefore, we add herein a new dimension for controlling the formation of the TICT state, in addition to the solvent polarity and acceptor strength parameters. These findings are not limited to the studied dyes, and we expect that numerous organic carboxylic acids dyes show similar properties.

7.
J Phys Chem B ; 125(1): 137-147, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356279

RESUMO

Long associated with cell death, hydrogen peroxide (H2O2) is now known to perform many physiological roles. Unraveling its biological mechanisms of action requires atomic-level knowledge of its association with proteins and lipids, which we address here. High-level [MP2(full)/6-311++G(3df,3pd)] ab initio calculations reveal skew rotamers as the lowest-energy states of isolated H2O2 (ϕHOOH ∼ 112°) with minimum and maximum electrostatic potentials (kcal/mol) of -24.8 (Vs,min) and 36.5 (Vs,max), respectively. Transition-state, nonpolar trans rotamers (ϕHOOH ∼ 180°) at 1.2 kcal/mol higher in energy are poorer H-bond acceptors (Vs,min = -16.6) than the skew rotamers, while highly polar cis rotamers (ϕHOOH ∼ 0°) at 7.8 kcal/mol are much better H-bond donors (Vs,max = 52.7). Modeling H2O2 association with neutral and charged analogs of protein residues and lipid groups (e.g., ester, phosphate, choline) reveals that skew rotamers (ϕHOOH = 84-122°) are favored in the neutral and cationic complexes, which display gas-phase interaction energies (ECP, kcal/mol) of -1.5 to -18. The neutral and cationic complexes of H2O exhibit a similar range of stabilities (ECP ∼ -1 to -18). However, considerably higher energies (ECP ∼ -14 to -36) are found for the H2O2 complexes of the anionic ligands, which are stabilized by charge-assisted H-bond donation from cis and distorted cis rotamers (ϕHOOH = 0-60°). H2O is a much poorer H-bond donor (Vs,max = 33.4) than cis-H2O2, so its anionic complexes are significantly weaker (ECP ∼ -11 to -20). Thus, by dictating the rotamer preference of H2O2, functional groups in biomolecules can discriminate between H2O2 and H2O. Finally, exploiting the present ab initio data, we calibrated and validated our published molecular mechanics model for H2O2 (Orabi, E. A.; English, A. M. J. Chem. Theory Comput. 2018, 14, 2808-2821) to provide an important tool for simulating H2O2 in biology.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Ligação de Hidrogênio , Lipídeos , Rotação
8.
ACS Omega ; 5(46): 29988-30000, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251435

RESUMO

Biocompatible luminogens with aggregation-induced emission (AIE) have several applications in the biology field, such as in detecting biomacromolecules bioprobes and in bio-imaging. Due to their bioactivities and light-emitting properties, many heterocyclic compounds are good candidates for such applications. However, heterocyclic π-conjugated systems with AIE behavior remain rare as strong intermolecular π-π interactions usually quench their emission. In this work, new thienopyrimidine heterocyclic compounds were synthesized and their structures were verified by elemental analysis and Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and 13C NMR spectra. The photophysical properties of some compounds were investigated in the solution and solid states. Density functional theory calculations were also performed to confirm the observed photophysical properties of the compounds. The studied dyes displayed AIE properties with spectral shapes related to the aggregate structure and a quantum yield up to 10.8%. The emission efficiency of the powder is attributed to the incorporation of multiply rotatable and twisted aryl groups to the fused heterocyclic moieties. The dyes also showed high thermal stability and potent antimicrobial activities against numerous bacterial and fungal strains. Additionally, the cytotoxicity of the new compounds was evaluated against the Caco-2 cell line, and molecular docking was used to investigate the binding conformation of the most effective compound with the MNK2 enzyme. Therefore, the presented structures may potentially be used for bioapplications.

9.
J Chem Theory Comput ; 16(8): 5105-5126, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32615034

RESUMO

Hydrogen fluoride (HF) is the most polar diatomic molecule and one of the simplest molecules capable of hydrogen-bonding. HF deviates from ideality both in the gas phase and in solution and is thus of great interest from a fundamental standpoint. Pure and aqueous HF solutions are broadly used in chemical and industrial processes, despite their high toxicity. HF is a stable species also in some biological conditions, because it does not readily dissociate in water unlike other hydrogen halides; yet, little is known about how HF interacts with biomolecules. Here, we set out to develop a molecular-mechanics model to enable computer simulations of HF in chemical and biological applications. This model is based on a comprehensive high-level ab initio quantum chemical investigation of the structure and energetics of the HF monomer and dimer; (HF)n clusters, for n = 3-7; various clusters of HF and H2O; and complexes of HF with analogs of all 20 amino acids and of several commonly occurring lipids, both neutral and ionized. This systematic analysis explains the unique properties of this molecule: for example, that interacting HF molecules favor nonlinear geometries despite being diatomic and that HF is a strong H-bond donor but a poor acceptor. The ab initio data also enables us to calibrate a three-site molecular-mechanics model, with which we investigate the structure and thermodynamic properties of gaseous, liquid, and supercritical HF in a wide range of temperatures and pressures; the solvation structure of HF in water and of H2O in liquid HF; and the free diffusion of HF across a lipid bilayer, a key process underlying the high cytotoxicity of HF. Despite its inherent simplifications, the model presented significantly improves upon previous efforts to capture the properties of pure and aqueous HF fluids by molecular-mechanics methods and to our knowledge constitutes the first parameter set calibrated for biomolecular simulations.


Assuntos
Ácido Fluorídrico/química , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
10.
J Comput Chem ; 41(5): 472-481, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31652004

RESUMO

Cation-π interactions play important roles in molecular recognition and in the stability and function of proteins. However, accurate description of the structure and energetics of cation-π interactions presents a challenge to both additive and polarizable force fields, which are rarely designed to account for the complexation of charged groups with aromatic moieties. We calibrate the Drude polarizable force field for complexes of alkali metal ions (Li+ , Na+ , K+ , Rb+ , Cs+ ), ammonium (NH4+ ), tetramethylammonium (TMA+ ), and tetraethylammonium (TEA+ ) with aromatic amino acid side chain model compounds (benzene, toluene, 4-methylphenol, 3-methylindole) using high-level ab initio quantum chemical properties of these complexes. Molecular dynamics simulations reveal that cation-π complexes of the hard and tightly coordinated Li+ and Na+ ions are not stable in water but that larger ions form stable complexes, with binding free energies ranging between -0.8 and -2.9 kcal/mol. Like in gas phase, all complexes at equilibrium adopt an "en-face" complexation mode in water. The optimized Drude polarizable model provides an accurate description of the cation-π interactions involving small ions and proteins. © 2019 Wiley Periodicals, Inc.


Assuntos
Aminoácidos Aromáticos/química , Teoria da Densidade Funcional , Metais Alcalinos/química , Compostos de Amônio Quaternário/química , Íons/química
11.
J Nat Prod ; 82(10): 2682-2695, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31532650

RESUMO

Ellagitannin oligomers are large molecules habitually showing complex NMR spectra that are sometimes misinterpreted and lead to incorrect structures. Understanding the NMR spectroscopic features of a group of ellagitannins would overcome these inadequacies. In this study, investigation of the galls of Tamarix aphylla led to the isolation of three new ellagitannin oligomers, phyllagallins T1 (1), T2 (2), and Q1 (3), a known monomer nilotinin M4 (4), four known dimers, nilotinins D7 (5) and D8 (6), hirtellin B (7), and tamarixinin A (8), and a simple phenolic, dehydrotrigallic acid (9). 1D and 2D NMR, HRESI-TOFMS, and ECD experiments show that compounds 1-8 are hellinoyl-type ellagitannins. The NMR spectroscopic features of this type of ellagitannins and the reasons for the abnormal upfield shifts of glucose anomeric proton and hellinoyl moiety proton signals are established considering the experimental results as well as quantum chemical calculation on a simple hellinoyl-type monomer, phyllagallin M2. Based on these results, the NMR assignments reported previously by a different research group for bracteatinin T1 and hirtellin T3 are revised. A cytotoxicity study against human oral squamous cell carcinoma cell lines (Ca9-22, HSC-2, and HSC-4) and human mesenchymal normal oral cells (HGF, HPC, and HPLF) showed cytotoxic effects with tumor-specificity higher than 5.2, 3.0, 1.6, and 2.0 for compounds 5, 2, 9, and 3, respectively.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Taninos Hidrolisáveis/isolamento & purificação , Tamaricaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
12.
Phys Chem Chem Phys ; 21(29): 15988-16004, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31297500

RESUMO

S-Sulfhydration of cysteine to the Cys-SSH persulfide is an oxidative post-translational modification that plays an important regulatory role in many physiological systems. Though hydrogen persulfide (H2S2) has recently been established as a signaling and cellular sulfhydration reagent, the chemistry and chemical biology of persulfides remain poorly explored. We first report an extensive high-level ab initio quantum chemical investigation of (H2S2)n, (H2S2)m·H2O, and (H2O)m·H2S2 clusters (n = 1-3 and m = 1, 2) and of H2S2 complexes with 19 compounds that model the side chains of naturally-occurring amino acids. The high polarizability of S necessitates the use of large, very diffuse, basis sets for proper description of H2S2 and its complexes. H2S2 possesses a skewed equilibrium geometry, with nonpolar trans and more polar cis conformers 6 and 8 kcal mol-1 higher in energy, respectively; the skewed conformation is preserved in all neutral and cationic complexes while a cis geometry prevails in some anionic complexes. H2S2 is found to be a better H-bond donor and a poorer acceptor than H2S, and that in complexes with H2O, alcohols and amines, H2S2 is a better H-bond donor. Radical delocalization on both S atoms stabilizes the perthiyl (HSS˙) over the thiyl (HS˙) radical and results in a ∼20 kcal mol-1 lower S-H homolytic bond dissociation in H2S2, making it a potential antioxidant. A simple additive model is optimized for H2S2 and used together with the TIP3P model and the CHARMM36 all-atom force field (FF) to investigate the structure and thermodynamic properties of liquid H2S2 and the solubility of H2S2 in water, and to model H2S2-protein interactions (for which new FF parameters are further developed). Very weak H-bonding characterizes liquid H2S2 and it is found immiscible in liquid water with a trend in H-bonding strengths between H2S2 and H2O in the order O-HO ≫ S-HO > O-HS. This work does not only provide a thorough description of the structure and energetics of H2S2 and its various complexes, but also yields a reliable FF for investigating H2S2 in chemistry and biology.


Assuntos
Simulação por Computador , Modelos Químicos , Sulfetos/química , Hidrogênio/química , Ligação de Hidrogênio , Termodinâmica
13.
Phys Chem Chem Phys ; 21(27): 14620-14628, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31214677

RESUMO

Oxidation and protonation/deprotonation strongly impact intermolecular noncovalent interactions. For example, S-aromatic interactions are stabilized up to three-fold in the gas phase on oxidation of the sulfur ligand or protonation/deprotonation of the aromatic. To probe if such stabilizing effects are additive and to model interactions of oxidized methionine (MetOn) with protonated histidine and deprotonated tyrosine residues in proteins, we examined Me2SOn (n = 1, 2) binding to imidazolium, phenolate and their 4-methylated forms. Ab initio MP2(full)/6-311++G(d,p) gas-phase calculations reveal that the Me2SOn-imidazolium complexes adopt edge-on geometry with σ-type (N/C-HarO) H-bonding and interaction energies of -17.2 to -31.1 kcal mol-1. The less stable (-13.8 to -21.0 kcal mol-1) Me2SOn-phenolates possess en-face geometry stabilized by π-type (C-Hπar) H-bonding. Comparing these energies with those reported for the Me2S-neutral aromatics affirms the additive effects of ligand protonation/deprotonation and oxidation on gas-phase stability. However, this is not the case in water although the aqueous complexes retain their preferred gas-phase σ- and π-type H-bonded structures. Binding free energies (kcal mol-1) calculated from molecular dynamics simulations in bulk water (preceded by CHARMM36 force field calibration where necessary) reveal that Me2SO-imidazolium (-4.4) is more stable than Me2SO-phenolate (-2.4) but Me2SO2-imidazolium (-0.6) is less stable than Me2SO2-phenolate (-3.8). Vertical ionization potentials (IPV) calculated for the gas-phase complexes indicate that the Me2SOn-phenolates, but not the Me2SOn-imidazoles, are oxidizable under biological conditions. Charge transfer from the phenolate increases its IPV by ∼20%, decreasing its susceptibility to oxidation. Overall, this work provides fundamental data to predict the behaviour of protein-based MetOn-aromatic-ion interactions.


Assuntos
Imidazóis/química , Modelos Químicos , Fenóis/química , Safrol/análogos & derivados , Sulfonas/química , Metabolismo Energético , Simulação de Dinâmica Molecular , Oxirredução , Safrol/química
14.
Phys Chem Chem Phys ; 20(35): 23132-23141, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168822

RESUMO

Noncovalent interactions between Met and aromatic residues define a common Met-aromatic motif in proteins. Met oxidation to MetOn (n = 1 sulfoxide, n = 2 sulfone) alters protein stability and function. To predict the chemical and physical consequences of such oxidations, we modeled the chemistry and redox properties of MetOn-aromatic complexes in depth for comparison with our Met-aromatic models (E. A. Orabi and A. M. English, J. Phys. Chem. B, 2018, 122, 3760). We describe here ab initio quantum mechanical calculations at the MP2(full)/6-311++G(d,p) level of theory on complexes of MetOn (n = 1, 2; modeled by Me2SO and Me2SO2) with models of the side-chains of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol) and His (imidazole, 4-methylimidazole). Binding energies of the global minimum conformers (-3.4 to -11.9 kcal mol-1) indicate that the gas-phase Me2SOn-aromatics are 40-115% more stable than the Me2S-aromatics. Binding of S between the edge and face of the aromatic ring is favored in most complexes as it accommodates both robust σ- and π-type H-bonding. Interactions involving the σ-holes on the S atoms (σ-holeπar and σ-holeNar/Oar), as well as Sπ interactions in the sulfoxides, contribute to complex stability. Complexation modulates the ionization potential (IP) of the interacting fragments with the binding geometry dictating the center oxidized in the Me2SO-aromatics whereas the aromatic is oxidized in the Me2SO2 complexes because of the sulfone's high IP. Potentials of mean force reveal binding free energies of -0.2 to -0.7 kcal mol-1 in bulk water, which indicates that the Me2SOn-aromatics are up to 80% less stable than the corresponding aqueous Me2S-aromatics. Molecular dynamics simulations predict that Me2SOn preferentially interacts with the ring face and expose the dominance of π- vs. σ-type H-bonding in the hydrated complexes as found for the Me2S-aromatics. Our modeling will inform how Met/MetOn-aromatic motifs are determinants of redox-induced changes in proteins.

15.
J Chem Theory Comput ; 14(5): 2808-2821, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29630362

RESUMO

Hydrogen peroxide (H2O2) has numerous industrial, environmental, medical, cosmetic, and biological applications. Given its importance, we provide a simple model as an alternative to experiment for studying the properties of pure liquid H2O2 and its concentrated aqueous solutions, which are hazardous, and for understanding the biological roles of H2O2 at the molecular level. A four-site additive model is calibrated for H2O2 based on the ab initio and experimental properties of the gaseous monomer and the density and heat of vaporization of liquid H2O2 at 0 °C. Our model together with the TIP3P water model reproduce the ab initio binding energies of (H2O2) m, H2O2· nH2O, and nH2O2·H2O clusters ( m = 2, 3 and n = 1, 2) calculated at the MP2 level using the 6-311++G(d,p) or the 6-311++G(3df,3pd) basis set. It yields structure, the self-diffusion coefficient, heat capacity, and densities at temperatures up to 200 °C of the pure liquid in good agreement with experiment. The model correctly predicts the hydration free energy of H2O2 and reproduces the experimental density of aqueous H2O2 solutions at 0-96 °C. Investigation of the solvation of H2O2 and H2O in aqueous H2O2 solutions reveals that, as in the gas phase, H2O2 is a better H-bond donor but poorer acceptor than H2O and the bonding stability follows the order Op-Hp···Ow > Ow-Hw···Ow ≥ Op-Hp···Op > Ow-Hw···Op. Stronger H-bonding in H2O/H2O2 mixtures than in the pure liquids is consistent with exothermic heats of mixing and explains why the observed density and vapor pressure of the aqueous solutions are higher and lower, respectively, than expected from ideal mixing. Results also show that H2O2 adopts a skewed equilibrium geometry in gas and liquid phases but more polar cis and nonpolar trans conformations also are accessible and will stabilize H2O2 in environments of different polarity. In sum, our simple model presents a reliable tool for simulating H2O2 in chemistry and biology.

16.
J Phys Chem B ; 122(14): 3760-3770, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29533644

RESUMO

S-aromatic motifs are important noncovalent forces for protein stability and function but remain poorly understood. Hence, we performed quantum calculations at the MP2(full)/6-311++G(d,p) level on complexes between Cys (H2S, MeSH) and Met (Me2S) models with models of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol), and His (imidazole, 4-methylimidazole). The most stable gas-phase conformers exhibit binding energies of -2 to -6 kcal/mol, and the S atom lies perpendicular to the ring plane. This reveals preferential interaction with the ring π-system, except in the imidazoles where S binds edge-on to an N atom. Complexation tunes the gas-phase vertical ionization potentials of the ligands over as much as 1 eV, and strong σ- or π-type H-bonding supports charge transfer to the H-bond donor, rendering it more oxidizable. When the S atom acts as an H-bond acceptor (N/O-Har···S), calibration of the CHARMM36 force field (by optimizing pair-specific Lennard-Jones parameters) is required. Implementing the optimized parameters in molecular dynamics simulations in bulk water, we find stable S-aromatic complexes with binding free energies of -0.6 to -1.1 kcal/mol at ligand separations up to 8 Å. The aqueous S-aromatics exhibit flexible binding conformations, but edge-on conformers are less stable in water. Reflecting this, only 0.3 to 10% of the S-indole, S-phenol, and S-imidazole structures are stabilized by N/O-Har···S or S-H···Oar/Nar σ-type H-bonding. The wide range of energies and geometries found for S-aromatic interactions and their tunable redox properties expose the versatility and variability of the S-aromatic motif in proteins and allow us to predict a number of their reported properties.


Assuntos
Simulação de Dinâmica Molecular , Proteína S/química , Teoria Quântica , Oxirredução , Conformação Proteica
17.
J Phys Chem B ; 122(8): 2251-2260, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29397727

RESUMO

Cation-π interactions play important roles in the stabilization of protein structures and protein-ligand complexes. They contribute to the binding of quaternary ammonium ligands (mainly RNH3+ and RN(CH3)3+) to various protein receptors and are likely involved in the blockage of potassium channels by tetramethylammonium (TMA+) and tetraethylammonium (TEA+). Polarizable molecular models are calibrated for NH4+, TMA+, and TEA+ interacting with benzene, toluene, 4-methylphenol, and 3-methylindole (representing aromatic amino acid side chains) based on the ab initio MP2(full)/6-311++G(d,p) properties of the complexes. Whereas the gas-phase affinity of the ions with a given aromatic follows the trend NH4+ > TMA+ > TEA+, molecular dynamics simulations using the polarizable models show a reverse trend in water, likely due to a contribution from the hydrophobic effect. This reversed trend follows the solubility of aromatic hydrocarbons in quaternary ammonium salt solutions, which suggests a role for cation-π interactions in the salting-in of aromatic compounds in solution. Simulations in water show that the complexes possess binding free energies ranging from -1.3 to -3.3 kcal/mol (compared to gas-phase binding energies between -8.5 and -25.0 kcal/mol). Interestingly, whereas the most stable complexes involve TEA+ (the largest ion), the most stable solvent-separated complexes involve TMA+ (the intermediate-size ion).


Assuntos
Aminoácidos Aromáticos/química , Compostos de Amônio Quaternário/química , Íons/química , Simulação de Dinâmica Molecular , Teoria Quântica
18.
RSC Adv ; 8(54): 30842-30850, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35548767

RESUMO

4-Acylpyrazolone Schiff bases display antimicrobial, antiprion, antioxidant, and other biological activities. They are also used as ligands and some of their complexes possess photoluminescence and anticancer properties. These Schiff bases may exist in four tautomeric forms that correspond to H at the C (imine-one(I)), N (imine-one(II)), and O (imine-ol) atoms of the pyrazolone ring or at the azomethine N atom (amine-one). While crystal structures show the amine-one form, the identity of the tautomeric form in solution and the structure-antioxidant activity relationship of these compounds are not clear. We perform quantum mechanical investigations on nine 4-acylpyrazolone-based Schiff bases at the B3LYP/6-311++G(d,p) level of theory in the gas phase and in chloroform, dimethyl sulfoxide, and water using the polarizable continuum model (PCM). Results show that the imine-ol, imine-one(I), and imine-one(II) isomers are, in respective, 6.5-8.0, 17-20, and 19-23 kcal mol-1 less stable than the amine-one form and that solvents further stabilize the later form. The energy barrier for imine-ol to amine-one conversion is only 0-1 kcal mol-1, showing that formation of the latter form is both kinetically and thermodynamically favorable. NMR calculations show that H in the amine-one and imine-ol forms appears at δ = 11.9-12.9 and 14.0-15.7 ppm, respectively, revealing that the experimentally reported 1H NMR spectra of these compounds are due to the amine-one tautomeric form. The structure-antioxidant activity relationship is investigated and structural modifications that increase the antioxidant activity are discussed. Calculations using the PCM show that the vertical ionization potential (IPV) is inversely proportional with the ferric reducing antioxidant power (FRAP) of these compounds. IPV thus presents a valuable tool for predicting the FRAP.

19.
Structure ; 23(8): 1550-1557, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26190573

RESUMO

In human cells, membrane proteins of the rhesus (Rh) family excrete ammonium and play a role in pH regulation. Based on high-resolution structures, Rh proteins are generally understood to act as NH3 channels. Given that cell membranes are permeable to gases like NH3, the role of such proteins remains a paradox. Using molecular and quantum mechanical calculations, we show that a crystallographically identified site in the RhCG pore actually recruits NH4(+), which is found in higher concentration and binds with higher affinity than NH3, increasing the efficiency of the transport mechanism. A proton is transferred from NH4(+) to a signature histidine (the only moiety thermodynamically likely to accept a proton) followed by the diffusion of NH3 down the pore. The excess proton is circulated back to the extracellular vestibule through a hydrogen bond network, which involves a highly conserved and functionally important aspartic acid, resulting in the net transport of NH3.


Assuntos
Amônia/química , Ácido Aspártico/química , Proteínas de Transporte de Cátions/química , Histidina/química , Glicoproteínas de Membrana/química , Prótons , Amônia/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Histidina/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Transporte de Íons , Cinética , Glicoproteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Multimerização Proteica , Teoria Quântica , Eletricidade Estática , Termodinâmica
20.
J Chem Theory Comput ; 10(8): 3221-35, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26588292

RESUMO

A polarizable model for hydrogen sulfide (H2S) is optimized based on the experimental properties of the monomer and of the bulk liquid. The model is characterized by rigid SH bonds but flexible HSH angle and the polarizability is based on the Drude oscillator model. Bonded parameters and atomic charges are based on the experimental properties of the gaseous monomer. Atomic Lennard-Jones (LJ) parameters are adjusted based on the density of H2S around the critical point (in the temperature range 363-393 K and pressure range 8.023-10.013 MPa). The model gives binding energies for H2S dimers, trimers, and tetramers in good agreement with ab initio MP2(full)/6-311++G(d,p) results. It shows a liquid structure in very good agreement with neutron diffraction data. The model also gives density, self-diffusion coefficient, heat of vaporization, and dielectric constant of liquid hydrogen sulfide at the normal boiling point in good agreement with experimental data. In addition, the model is transferable to high temperature and pressure conditions, as evidenced from simulations up to 542.2 K and 40 MPa. The model is used in combination with the SWM4-NDP water model, with LJ parameters between the S and O atoms adjusted to reproduce the experimental hydration free energy of H2S. Simulations suggest that, in its first solvation shell, a single H2O molecule is solvated by 10 H2S molecules while a single H2S molecule is solvated by 20.5 H2O molecules. Pair-specific LJ parameters between alkali ions (Li(+), Na(+), K(+), Rb(+), Cs(+)) and the S atom are adjusted to reproduce ab initio binding energies of the ion-H2S pairs at the CCSD(T) level. Simulations based on these parameters show that alkali ions have higher coordination numbers and lower solvation free energies in liquid H2S than in liquid water or liquid ammonia. The model is also used to investigate the preferential solvation of the ions in aqueous solutions with a 10% H2S mole fraction. Results show that the ions are preferentially solvated by water in their first solvation shell but have no significant selectivity to either ligands in their second shells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...