Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37512523

RESUMO

Date palm (Phoenix dactylifera L.) fruits contain high concentrations of phenolic compounds, particularly flavonoids and other micronutrients, which impact human health due to their potent antioxidant, anti-inflammatory, and anticancer characteristics. In the present study, the effect of ethyl acetate, hydroethanol, hydromethanol, and aqueous extract from three date palm varieties (i.e., Ajwa, Siwi, and Sukkari) on phytochemical profiles and antioxidant and anticancer activities was investigated. Fruit extracts were screened for their antioxidant activity using the DPPH· method. Phenolic constituents were quantified and identified using HPLC-DAD. Extracts (ethyl acetate, hydroethanol, and hydromethanol) were assessed for cytotoxicity on nine human cancer cell lines, i.e., MG-63, HCT116, MCF7, MDA-MB-231, HEPG2, HUH7, A549, H460, and HFB4, using the sulphorhodamine-B (SRB) assay. Results showed that the ethyl acetate extract of the Sukkari fruits has the greatest antioxidant potential with an IC50 value of 132.4 ± 0.3 µg·mL-1, while the aqueous extract of Ajwa date fruits exhibited the lowest antioxidant effect with an IC50 value of 867.1 ± 0.3 µg·mL-1. The extracts exhibited potent to moderate anticancer activities against the investigated cancer cell line in a source-dependent manner. Methanol extract of Siwi fruits exhibited the most potent anticancer activity (IC50 = 99 ± 1.6 µg·mL-1), followed by the same extract of Sukkari fruits with an IC50 value of 119 ± 3.5 µg·mL-1 against the cell line of human breast cancer (MDA-MB-231). Additionally, principal component analysis (PCA) was investigated to determine the relationship among the investigated traits and treatments. Our findings reveal that date palm fruit-derived extracts are excellent sources of biologically active constituents and substantiate their potential use in new anticancer strategies from natural resources.

2.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807519

RESUMO

In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV-Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L-1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L-1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L-1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L-1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L-1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.


Assuntos
Basidiomycota , Nanopartículas , Doenças das Plantas/microbiologia , Proteoma , Puccinia , Estresse Fisiológico , Titânio , Triticum/microbiologia
3.
PLoS One ; 15(8): e0237567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797097

RESUMO

Distinct morphological MgO nanoparticles (MgONPs) were synthesized using biomasses of Saussurea costus roots. The biomass of two varieties of Saussurea costus (Qustal hindi and Qustal bahri) were used in the green synthesis of MgONPs. The physical and chemical features of nanoparticles were confirmed by spectroscopic and microscopic techniques. The surface morphology of the obtained nanoparticles was detected at different magnifications by SEM and TEM microscopy and the size of nanoparticles were found to be 30 and 34 nm for Qustal hindi and Qustal bahri, respectively. The antimicrobial activity of the prepared MgONPs was screened against six pathogenic strains. The synthesized nanoparticles by Qustal bahri biomass exerted significant inhibition zones 15, 16, 18, 17, 14, and 10 mm against E. coli, P. aeruginosa, C. tropicalis and C. glabrata, S. aureus and B. subtilis as compared to those from Qustal hindi 12, 8 and 17 mm against B. subtilis, E. coli and C. tropicalis, respectively. MgONPs showed a potential cytotoxicity effect against MCF-7 breast cancer cell lines. Cellular investigations of MgONPs revealed that the prepared nanoparticles by Qustal bahri exhibited high cytotoxicity against MCF-7 cancer cell lines. IC50 values in MCF-7 cells were found to be 67.3% and 52.1% for MgONPs of Saussurea costus biomasses, respectively. Also, the photocatalytic activity of MgONPs of each Saussurea costus variety was comparatively studied. They exhibited an enhanced photocatalytic degradation of methylene blue after UV irradiation for 1 h as 92% and 59% for those prepared by Qustal bahri and Qustal hindi, respectively. Outcome of results revealed that the biosynthesized MgONPs showed promising biomedical potentials.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Óxido de Magnésio/farmacologia , Azul de Metileno/química , Saussurea/química , Anti-Infecciosos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Biomassa , Catálise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fungos/efeitos dos fármacos , Química Verde , Humanos , Células MCF-7 , Óxido de Magnésio/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Extratos Vegetais/química , Raízes de Plantas/química
4.
Methods Mol Biol ; 478: 149-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19009445

RESUMO

Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic trade mark bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages. The characteristic of HVA1 expression for osmotic tolerance in transgenic oat progeny was analyzed in vitro as well as in vivo. Transgenic plants exhibited significantly (P<0.05) increased tolerance to stress conditions than non-transgenic control plants. The symptoms of wilting or death of leaves as observed in 80% of non-transgenic plants due to osmotic stress was delayed and detected only in less than 10% of trans-genic plants. These observations confirmed the characteristic of HVA1 protein as providing or enhancing the osmotic tolerance in transgenic plants against salinity and possible water-deficiency stress conditions.


Assuntos
Avena/genética , Avena/metabolismo , Técnicas de Transferência de Genes , Estresse Fisiológico , Transformação Genética , Avena/efeitos dos fármacos , Fenômenos Bioquímicos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pressão Osmótica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sais/farmacologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transgenes/genética , Água/metabolismo
5.
J Plant Physiol ; 162(6): 711-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16008094

RESUMO

FLOWERING LOCUS C (FLC), a gene from Arabidopsis thaliana (L.) Heynh. that acts as a flowering repressor, was expressed in tobacco (Nicotiana tabacum L. 'Samsun'). Five putative transgenic lines were selected and examined for the presence of FLC. Genomic DNA and total RNA were isolated from the Leaves and used for polymerase chain reaction (PCR) and RNA blot analysis, respectively. Both DNA and RNA tests confirmed the integration and transcription of FLC in all five Lines and their T1 progenies. Transgenic plants in one Line showed an average of 36 d delay in flowering time compared to control plants, and the overall mean for all lines was 14 d. Transgenic plants also displayed increased leaf size and biomass yield and reduced height at flowering time. It is important to note that the delay in flowering might have been caused by a slower rate of leaf initiation (i.e. nodes/day) rather than by a change in the flowering mechanism itself.


Assuntos
Proteínas de Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Domínio MADS/fisiologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Biomassa , Expressão Gênica/fisiologia , Proteínas de Domínio MADS/biossíntese , Proteínas de Domínio MADS/genética , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...