Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 73: 102523, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35286864

RESUMO

The representation of contextual information peripheral to a salient stimulus is central to an animal's ability to correctly interpret and flexibly respond to that stimulus. While the computations and circuits underlying the context-dependent modulation of stimulus-response pairings have typically been studied in vertebrates, the genetic tractability, numeric simplification, and well-characterized connectivity patterns of the Drosophila melanogaster brain have facilitated circuit-level insights into contextual processing. Recent studies in flies reveal the neuronal mechanisms that create flexible context-dependent behavioral responses to sensory events in conditions of predation threat, feeding regulation, and social interaction.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia
2.
Nat Commun ; 11(1): 3342, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620835

RESUMO

Subdivisions of mouse whisker somatosensory thalamus project to cortex in a region-specific and layer-specific manner. However, a clear anatomical dissection of these pathways and their functional properties during whisker sensation is lacking. Here, we use anterograde trans-synaptic viral vectors to identify three specific thalamic subpopulations based on their connectivity with brainstem. The principal trigeminal nucleus innervates ventral posterior medial thalamus, which conveys whisker-selective tactile information to layer 4 primary somatosensory cortex that is highly sensitive to self-initiated movements. The spinal trigeminal nucleus innervates a rostral part of the posterior medial (POm) thalamus, signaling whisker-selective sensory information, as well as decision-related information during a goal-directed behavior, to layer 4 secondary somatosensory cortex. A caudal part of the POm, which apparently does not receive brainstem input, innervates layer 1 and 5A, responding with little whisker selectivity, but showing decision-related modulation. Our results suggest the existence of complementary segregated information streams to somatosensory cortices.


Assuntos
Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Tato/fisiologia , Vibrissas/fisiologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Transmissão Sináptica , Tálamo/citologia , Vibrissas/inervação
3.
Elife ; 82019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860443

RESUMO

Mouse primary somatosensory barrel cortex (wS1) processes whisker sensory information, receiving input from two distinct thalamic nuclei. The first-order ventral posterior medial (VPM) somatosensory thalamic nucleus most densely innervates layer 4 (L4) barrels, whereas the higher-order posterior thalamic nucleus (medial part, POm) most densely innervates L1 and L5A. We optogenetically stimulated VPM or POm axons, and recorded evoked excitatory postsynaptic potentials (EPSPs) in different cell-types across cortical layers in wS1. We found that excitatory neurons and parvalbumin-expressing inhibitory neurons received the largest EPSPs, dominated by VPM input to L4 and POm input to L5A. In contrast, somatostatin-expressing inhibitory neurons received very little input from either pathway in any layer. Vasoactive intestinal peptide-expressing inhibitory neurons received an intermediate level of excitatory input with less apparent layer-specificity. Our data help understand how wS1 neocortical microcircuits might process and integrate sensory and higher-order inputs.


Assuntos
Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia , Animais , Eletroencefalografia , Potenciais Evocados , Mecanorreceptores/fisiologia , Camundongos , Optogenética , Estimulação Luminosa , Vibrissas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA