Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171320

RESUMO

Carbon nanowalls (CNWs) have attracted significant attention for gas sensing applications due to their exceptional material properties such as large specific surface area, electric conductivity, nano- and/or micro-porous structure, and high charge carrier mobility. In this work, CNW films were synthesized and used to fabricate gas sensors for carbon dioxide (CO2) gas sensing. The CNW films were synthesized using an inductively-coupled plasma (ICP) plasma-enhanced chemical vapor deposition (PECVD) method and their structural and morphological properties were characterized using Raman spectroscopy and electron microscopy. The obtained CNW films were used to fabricate gas sensors employing interdigitated gold (Au) microelectrodes. The gas sensors were fabricated using both direct synthesis of CNW films on interdigitated Au microelectrodes on quartz and also transferring presynthesized CNW films onto interdigitated Au microelectrodes on glass. The CO2gas-sensing properties of fabricated devices were investigated for different concentrations of CO2gas and temperature-ranges. The sensitivities of fabricated devices were found to have a linear dependence on the concentration of CO2gas and increase with temperature. It was revealed that devices, in which CNW films have a maze-like structure, perform better compared to the ones that have a petal-like structure. A sensitivity value of 1.18% was obtained at 500 ppm CO2concentration and 100 °C device temperature. The CNW-based gas sensors have the potential for the development of easy-to-manufacture and efficient gas sensors for toxic gas monitoring.

2.
Heliyon ; 10(1): e23844, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192869

RESUMO

The paper was devoted to the results of the study of methods to obtain superhydrophobic film based on the plasma polymerisation of hexamethyldisiloxane (HMDSO) inside the plasma jet at atmospheric pressure. The 3D printing technology was intended for film deposition, which has the advantage of producing superhydrophobic surfaces over a wide range of scales. The effect of synthesis parameters on the hydrophobic properties of the film has been studied. The obtained superhydrophobic films demonstrated stability and resistance in chemical solutions, at high temperatures, under the influence of UV-irradiation and in various weather conditions. The results can be used in various fields, including automotive, construction, electronics, medicine and others, where surface protection against moisture, contamination and corrosion is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA