Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1251879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781541

RESUMO

Introduction: A soft pneumatic muscle was developed to replicate intricate ankle motions essential for rehabilitation, with a specific focus on rotational movement along the x-axis, crucial for walking. The design incorporated precise geometrical parameters and air pressure regulation to enable controlled expansion and motion. Methods: The muscle's response was evaluated under pressure conditions ranging from 100-145 kPa. To optimize the muscle design, finite element simulation was employed to analyze its performance in terms of motion range, force generation, and energy efficiency. An experimental platform was created to assess the muscle's deformation, utilizing advanced techniques such as high-resolution imaging and deep-learning position estimation models for accurate measurements. The fabrication process involved silicone-based materials and 3D-printed molds, enabling precise control and customization of muscle expansion and contraction. Results: The experimental results demonstrated that, under a pressure of 145 kPa, the y-axis deformation (y-def) reached 165 mm, while the x-axis and z-axis deformations were significantly smaller at 0.056 mm and 0.0376 mm, respectively, highlighting the predominant elongation in the y-axis resulting from pressure actuation. The soft muscle model featured a single chamber constructed from silicone rubber, and the visually illustrated and detailed geometrical parameters played a critical role in its functionality, allowing systematic manipulation to meet specific application requirements. Discussion: The simulation and experimental results provided compelling evidence of the soft muscle design's adaptability, controllability, and effectiveness, thus establishing a solid foundation for further advancements in ankle rehabilitation and soft robotics. Incorporating this soft muscle into rehabilitation protocols holds significant promise for enhancing ankle mobility and overall ambulatory function, offering new opportunities to tailor rehabilitation interventions and improve motor function restoration.

2.
Micromachines (Basel) ; 14(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512742

RESUMO

Soft robotics, a recent advancement in robotics systems, distinguishes itself by utilizing soft and flexible materials like silicon rubber, prioritizing safety during human interaction, and excelling in handling complex or delicate objects. Soft pneumatic actuators, a prevalent type of soft robot, are the focus of this paper. A new geometrical parameter for soft artificial pneumatic muscles is introduced, enabling the prediction of actuation behavior using analytical models based on specific design parameters. The study investigated the impact of the chamber pitch parameter and actuation conditions on the deformation direction and internal stress of three tested soft pneumatic muscle (SPM) models. Simulation involved the modeling of hyperelastic materials using finite element analysis. Additionally, an artificial neural network (ANN) was employed to predict pressure values in three chambers at desired Cartesian positions. The trained ANN model demonstrated exceptional performance. It achieved high accuracy with training, validation, and testing residuals of 99.58%, 99.89%, and 99.79%, respectively. During the validation simulations and neural network results, the maximum errors in the x, y, and z coordinates were found to be 9.3%, 7.83%, and 8.8%, respectively. These results highlight the successful performance and efficacy of the trained ANN model in accurately predicting pressure values for the desired positions in the soft pneumatic muscles.

3.
Bioengineering (Basel) ; 10(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237627

RESUMO

Stroke is one of the most prevalent health issues that people face today, causing long-term complications such as paresis, hemiparesis, and aphasia. These conditions significantly impact a patient's physical abilities and cause financial and social hardships. In order to address these challenges, this paper presents a groundbreaking solution-a wearable rehabilitation glove. This motorized glove is designed to provide comfortable and effective rehabilitation for patients with paresis. Its unique soft materials and compact size make it easy to use in clinical settings and at home. The glove can train each finger individually and all fingers together, using assistive force generated by advanced linear integrated actuators controlled by sEMG signals. The glove is also durable and long-lasting, with 4-5 h of battery life. The wearable motorized glove is worn on the affected hand to provide assistive force during rehabilitation training. The key to this glove's effectiveness is its ability to perform the classified hand gestures acquired from the non-affected hand by integrating four sEMG sensors and a deep learning algorithm (the 1D-CNN algorithm and the InceptionTime algorithm). The InceptionTime algorithm classified ten hand gestures' sEMG signals with an accuracy of 91.60% and 90.09% in the training and verification sets, respectively. The overall accuracy was 90.89%. It showed potential as a tool for developing effective hand gesture recognition systems. The classified hand gestures can be used as a control command for the motorized wearable glove placed on the affected hand, allowing it to mimic the movements of the non-affected hand. This innovative technology performs rehabilitation exercises based on the theory of mirror therapy and task-oriented therapy. Overall, this wearable rehabilitation glove represents a significant step forward in stroke rehabilitation, offering a practical and effective solution to help patients recover from stroke's physical, financial, and social impact.

4.
Bioengineering (Basel) ; 9(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36550974

RESUMO

Patients with severe CNS injuries struggle primarily with their sensorimotor function and communication with the outside world. There is an urgent need for advanced neural rehabilitation and intelligent interaction technology to provide help for patients with nerve injuries. Recent studies have established the brain-computer interface (BCI) in order to provide patients with appropriate interaction methods or more intelligent rehabilitation training. This paper reviews the most recent research on brain-computer-interface-based non-invasive rehabilitation systems. Various endogenous and exogenous methods, advantages, limitations, and challenges are discussed and proposed. In addition, the paper discusses the communication between the various brain-computer interface modes used between severely paralyzed and locked patients and the surrounding environment, particularly the brain-computer interaction system utilizing exogenous (induced) EEG signals (such as P300 and SSVEP). This discussion reveals with an examination of the interface for collecting EEG signals, EEG components, and signal postprocessing. Furthermore, the paper describes the development of natural interaction strategies, with a focus on signal acquisition, data processing, pattern recognition algorithms, and control techniques.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33360997

RESUMO

Foot progression angle (FPA) is vital in many disease assessment and rehabilitation applications, however previous magneto-IMU-based FPA estimation algorithms can be prone to magnetic distortion and inaccuracies after walking starts and turns. This paper presents a foot-worn IMU-based FPA estimation algorithm comprised of three key components: orientation estimation, acceleration transformation, and FPA estimation via peak foot deceleration. Twelve healthy subjects performed two walking experiments to evaluation IMU algorithm performance. The first experiment aimed to validate the proposed algorithm in continuous straight walking tasks across seven FPA gait patterns (large toe-in, medium toe-in, small toe-in, normal, small toe-out, medium toe-out, and large toe-out). The second experiment was performed to evaluate the proposed FPA algorithm for steps after walking starts and turns. Results showed that FPA estimations from the IMU-based algorithm closely followed marker-based system measurements with an overall mean absolute error of 3.1±1.3 deg, and the estimation results were valid for all steps immediately after walking starts and turns. This work could enable FPA assessment in environments where magnetic distortion is present due to ferrous metal structures and electrical equipment, or in real-life walking conditions when walking starts, stops, and turns commonly occur.


Assuntos
, Caminhada , Algoritmos , Fenômenos Biomecânicos , Marcha , Humanos , Dedos do Pé
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...