Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 13083, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753626

RESUMO

Emergent technologies that make use of novel materials and quantum properties of light states are at the forefront in the race for the physical implementation, encoding and transmission of information. Photonic crystals (PCs) enter this paradigm with optical materials that allow the control of light propagation and can be used for optical communication, and photonics and electronics integration, making use of materials ranging from semiconductors, to metals, metamaterials, and topological insulators, to mention but a few. Here, we show how designer superconductor materials integrated into PCs fabrication allow for an extraordinary reduction of electromagnetic waves damping, making possible their optimal propagation and tuning through the structure, below critical superconductor temperature. We experimentally demonstrate, for the first time, a successful integration of ferroelectric and superconductor materials into a one-dimensional (1D) PC composed of [Formula: see text] bilayers that work in the whole visible spectrum, and below (and above) critical superconductor temperature [Formula: see text]. Theoretical calculations support, for different number of bilayers N, the effectiveness of the produced 1D PCs and may pave the way for novel optoelectronics integration and information processing in the visible spectrum, while preserving their electric and optical properties.

2.
Beilstein J Nanotechnol ; 11: 651-661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363131

RESUMO

We studied in detail the in-plane magnetic properties of heterostructures based on a ferroelectric BaTiO3 overlayer deposited on a ferromagnetic La2/3Sr1/3MnO3 film grown epitaxially on pseudocubic (001)-oriented SrTiO3, (LaAlO3)0.3(Sr2TaAlO6)0.7 and LaAlO3 substrates. In this configuration, the combination of both functional perovskites constitutes an artificial multiferroic system with potential applications in spintronic devices based on the magnetoelectric effect. La2/3Sr1/3MnO3 single layers and BaTiO3/La2/3Sr1/3MnO3 bilayers using the pulsed-laser deposition technique. We analyzed the films structurally through X-ray reciprocal space maps and high-angle annular dark field microscopy, and magnetically via thermal demagnetization curves and in-plane magnetization versus applied magnetic field loops at room temperature. Our results indicate that the BaTiO3 layer induces an additional strain in the La2/3Sr1/3MnO3 layers close to their common interface. The presence of BaTiO3 on the surface of tensile-strained La2/3Sr1/3MnO3 films transforms the in-plane biaxial magnetic anisotropy present in the single layer into an in-plane uniaxial magnetic anisotropy. Our experimental evidence suggests that this change in the magnetic anisotropy only occurs in tensile-strained La2/3Sr1/3MnO3 film and is favored by an additional strain on the La2/3Sr1/3MnO3 layer promoted by the BaTiO3 film. These findings reveal an additional mechanism that alters the magnetic behavior of the ferromagnetic layer, and consequently, deserves further in-depth research to determine how it can modify the magnetoelectric coupling of this hybrid multiferroic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...