Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 21(1)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35918180

RESUMO

Sugar transporter research focuses on the sugar uptake into cells. Under certain physiological conditions, however, the intracellular accumulation and secretion of carbohydrates (efflux) are relevant processes in many cell types. Currently, no cell-based system is available for specifically investigating glucose efflux. Therefore, we designed a system based on a hexose transporter-deficient Saccharomyces cerevisiae strain, in which the disaccharide maltose is provided as a donor of intracellular glucose. By deleting the hexokinase genes, we prevented the metabolization of glucose, and thereby achieved the accumulation of growth-inhibitory glucose levels inside the cells. When a permease mediating glucose efflux is expressed in this system, the inhibitory effect is relieved proportionally to the capacity of the introduced transporter. The assay is thereby suitable for screening of transporters and quantitative analyses of their glucose efflux capacities. Moreover, by simultaneous provision of intracellular glucose and extracellular xylose, we investigated how each sugar influences the transport of the other one from the opposite side of the membrane. Thereby, we could show that the xylose transporter variant Gal2N376F is insensitive not only to extracellular but also to intracellular glucose. Considering the importance of sugar transporters in biotechnology, the assay could facilitate new developments in a variety of applications.


Assuntos
Saccharomyces cerevisiae , Xilose , Carboidratos , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo , Xilose/metabolismo
2.
Sci Rep ; 12(1): 1429, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082341

RESUMO

The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma's reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 3/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/antagonistas & inibidores , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química
3.
Sci Rep ; 11(1): 24404, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937866

RESUMO

As abundant carbohydrates in renewable feedstocks, such as pectin-rich and lignocellulosic hydrolysates, the pentoses arabinose and xylose are regarded as important substrates for production of biofuels and chemicals by engineered microbial hosts. Their efficient transport across the cellular membrane is a prerequisite for economically viable fermentation processes. Thus, there is a need for transporter variants exhibiting a high transport rate of pentoses, especially in the presence of glucose, another major constituent of biomass-based feedstocks. Here, we describe a variant of the galactose permease Gal2 from Saccharomyces cerevisiae (Gal2N376Y/M435I), which is fully insensitive to competitive inhibition by glucose, but, at the same time, exhibits an improved transport capacity for xylose compared to the wildtype protein. Due to this unique property, it significantly reduces the fermentation time of a diploid industrial yeast strain engineered for efficient xylose consumption in mixed glucose/xylose media. When the N376Y/M435I mutations are introduced into a Gal2 variant resistant to glucose-induced degradation, the time necessary for the complete consumption of xylose is reduced by approximately 40%. Moreover, Gal2N376Y/M435I confers improved growth of engineered yeast on arabinose. Therefore, it is a valuable addition to the toolbox necessary for valorization of complex carbohydrate mixtures.


Assuntos
Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Pentoses/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Xilose/metabolismo
4.
Life (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575116

RESUMO

FAD synthase is the last enzyme in the pathway that converts riboflavin into FAD. In Saccharomyces cerevisiae, the gene encoding for FAD synthase is FAD1, from which a sole protein product (Fad1p) is expected to be generated. In this work, we showed that a natural Fad1p exists in yeast mitochondria and that, in its recombinant form, the protein is able, per se, to both enter mitochondria and to be destined to cytosol. Thus, we propose that FAD1 generates two echoforms-that is, two identical proteins addressed to different subcellular compartments. To shed light on the mechanism underlying the subcellular destination of Fad1p, the 3' region of FAD1 mRNA was analyzed by 3'RACE experiments, which revealed the existence of (at least) two FAD1 transcripts with different 3'UTRs, the short one being 128 bp and the long one being 759 bp. Bioinformatic analysis on these 3'UTRs allowed us to predict the existence of a cis-acting mitochondrial localization motif, present in both the transcripts and, presumably, involved in protein targeting based on the 3'UTR context. Here, we propose that the long FAD1 transcript might be responsible for the generation of mitochondrial Fad1p echoform.

5.
Sci Rep ; 11(1): 13751, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215797

RESUMO

Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Simulação por Computador , Diabetes Mellitus/tratamento farmacológico , Síndrome de Fanconi/tratamento farmacológico , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/ultraestrutura , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/ultraestrutura , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Interface Usuário-Computador
6.
ACS Synth Biol ; 10(5): 1077-1086, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33979526

RESUMO

Octanoic acid is an industrially relevant compound with applications in antimicrobials or as a precursor for biofuels. Microbial biosynthesis through yeast is a promising alternative to current unsustainable production methods. To increase octanoic acid titers in Saccharomyces cerevisiae, we use a previously developed biosensor that is based on the octanoic acid responsive pPDR12 promotor coupled to GFP. We establish a biosensor strain amenable for high-throughput screening of an octanoic acid producer strain library. Through development, optimization, and execution of a high-throughput screening approach, we were able to detect two new genetic targets, KCS1 and FSH2, which increased octanoic acid titers through combined overexpression by about 55% compared to the parental strain. Neither target has yet been reported to be involved in fatty acid biosynthesis. The presented methodology can be employed to screen any genetic library and thereby more genes involved in improving octanoic acid production can be detected in the future.


Assuntos
Caprilatos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina Proteases/genética , Técnicas Biossensoriais/métodos , Ácidos Graxos/biossíntese , Citometria de Fluxo/métodos , Expressão Gênica , Biblioteca Gênica , Proteínas de Fluorescência Verde/genética , Microrganismos Geneticamente Modificados , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
7.
Biotechnol Bioeng ; 118(8): 3046-3057, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003487

RESUMO

The eight-carbon fatty acid octanoic acid (OA) is an important platform chemical and precursor of many industrially relevant products. Its microbial biosynthesis is regarded as a promising alternative to current unsustainable production methods. In Saccharomyces cerevisiae, the production of OA had been previously achieved by rational engineering of the fatty acid synthase. For the supply of the precursor molecule acetyl-CoA and of the redox cofactor NADPH, the native pyruvate dehydrogenase bypass had been harnessed, or the cells had been additionally provided with a pathway involving a heterologous ATP-citrate lyase. Here, we redirected the flux of glucose towards the oxidative branch of the pentose phosphate pathway and overexpressed a heterologous phosphoketolase/phosphotransacetylase shunt to improve the supply of NADPH and acetyl-CoA in a strain background with abolished OA degradation. We show that these modifications lead to an increased yield of OA during the consumption of glucose by more than 60% compared to the parental strain. Furthermore, we investigated different genetic engineering targets to identify potential factors that limit the OA production in yeast. Toxicity assays performed with the engineered strains suggest that the inhibitory effects of OA on cell growth likely impose an upper limit to attainable OA yields.


Assuntos
Caprilatos/metabolismo , Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
FEMS Yeast Res ; 21(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33791789

RESUMO

The hexose permease Gal2 of Saccharomyces cerevisiae is expressed only in the presence of its physiological substrate galactose. Glucose tightly represses the GAL2 gene and also induces the clearance of the transporter from the plasma membrane by ubiquitination and subsequent degradation in the vacuole. Although many factors involved in this process, especially those responsible for the upstream signaling, have been elucidated, the mechanisms by which Gal2 is specifically targeted by the ubiquitination machinery have remained elusive. Here, we show that ubiquitination occurs within the N-terminal cytoplasmic tail and that the arrestin-like proteins Bul1 and Rod1 are likely acting as adaptors for docking of the ubiquitin E3-ligase Rsp5. We further demonstrate that phosphorylation on multiple residues within the tail is indispensable for the internalization and possibly represents a primary signal that might trigger the recruitment of arrestins to the transporter. In addition to these new fundamental insights, we describe Gal2 mutants with improved stability in the presence of glucose, which should prove valuable for engineering yeast strains utilizing complex carbohydrate mixtures present in hydrolysates of lignocellulosic or pectin-rich biomass.


Assuntos
Citoplasma/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Proteínas de Transporte de Monossacarídeos/genética , Fosforilação , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Ubiquitina/metabolismo
9.
Sci Rep ; 11(1): 3056, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542397

RESUMO

Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids' non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5-1.9 Å) of two homologous fungal decarboxylases, AGDC1 from Arxula adenivorans, and PPP2 from Madurella mycetomatis. Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae. The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid-base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a ß-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.

10.
FEMS Yeast Res ; 21(2)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599754

RESUMO

The medium-chain fatty acid octanoic acid is an important platform compound widely used in industry. The microbial production from sugars in Saccharomyces cerevisiae is a promising alternative to current non-sustainable production methods, however, titers need to be further increased. To achieve this, it is essential to have in-depth knowledge about the cell physiology during octanoic acid production. To this end, we collected the first RNA-Seq data of an octanoic acid producer strain at three time points during fermentation. The strain produced higher levels of octanoic acid and increased levels of fatty acids of other chain lengths (C6-C18) but showed decreased growth compared to the reference. Furthermore, we show that the here analyzed transcriptomic response to internally produced octanoic acid is notably distinct from a wild type's response to externally supplied octanoic acid as reported in previous publications. By comparing the transcriptomic response of different sampling times, we identified several genes that we subsequently overexpressed and knocked out, respectively. Hereby we identified RPL40B, to date unknown to play a role in fatty acid biosynthesis or medium-chain fatty acid tolerance. Overexpression of RPL40B led to an increase in octanoic acid titers by 40%.


Assuntos
Caprilatos/metabolismo , Perfilação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Vias Biossintéticas/genética , Caprilatos/análise , Fermentação
11.
FEMS Yeast Res ; 21(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33338229

RESUMO

Glucose uptake assays commonly rely on the isotope-labeled sugar, which is associated with radioactive waste and exposure of the experimenter to radiation. Here, we show that the rapid decrease of the cytosolic pH after a glucose pulse to starved Saccharomyces cerevisiae cells is dependent on the rate of sugar uptake and can be used to determine the kinetic parameters of sugar transporters. The pH-sensitive green fluorescent protein variant pHluorin is employed as a genetically encoded biosensor to measure the rate of acidification as a proxy of transport velocity in real time. The measurements are performed in the hexose transporter-deficient (hxt0) strain EBY.VW4000 that has been previously used to characterize a plethora of sugar transporters from various organisms. Therefore, this method provides an isotope-free, fluorometric approach for kinetic characterization of hexose transporters in a well-established yeast expression system.


Assuntos
Metabolismo dos Carboidratos/genética , Fluorometria/métodos , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais , Glucose/análise , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Cinética
12.
Sci Rep ; 10(1): 19021, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149263

RESUMO

D-Galacturonic acid (GalA) is the major constituent of pectin-rich biomass, an abundant and underutilized agricultural byproduct. By one reductive step catalyzed by GalA reductases, GalA is converted to the polyhydroxy acid L-galactonate (GalOA), the first intermediate of the fungal GalA catabolic pathway, which also has interesting properties for potential applications as an additive to nutrients and cosmetics. Previous attempts to establish the production of GalOA or the full GalA catabolic pathway in Saccharomyces cerevisiae proved challenging, presumably due to the inefficient supply of NADPH, the preferred cofactor of GalA reductases. Here, we tested this hypothesis by coupling the reduction of GalA to the oxidation of the sugar alcohol sorbitol that has a higher reduction state compared to glucose and thereby yields the necessary redox cofactors. By choosing a suitable sorbitol dehydrogenase, we designed yeast strains in which the sorbitol metabolism yields a "surplus" of either NADPH or NADH. By biotransformation experiments in controlled bioreactors, we demonstrate a nearly complete conversion of consumed GalA into GalOA and a highly efficient utilization of the co-substrate sorbitol in providing NADPH. Furthermore, we performed structure-guided mutagenesis of GalA reductases to change their cofactor preference from NADPH towards NADH and demonstrated their functionality by the production of GalOA in combination with the NADH-yielding sorbitol metabolism. Moreover, the engineered enzymes enabled a doubling of GalOA yields when glucose was used as a co-substrate. This significantly expands the possibilities for metabolic engineering of GalOA production and valorization of pectin-rich biomass in general.


Assuntos
Ácidos Hexurônicos/metabolismo , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/metabolismo , NAD/metabolismo , Saccharomyces cerevisiae/metabolismo , Biotransformação , Fermentação , Oxirredução
13.
ACS Synth Biol ; 9(11): 2909-2916, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33074655

RESUMO

Compartmentalization in membrane-surrounded organelles has the potential to overcome obstacles associated with the engineering of metabolic pathways, such as unwanted side reactions, accumulation of toxic intermediates, drain of intermediates out of the cell, and long diffusion distances. Strategies utilizing natural organelles suffer from the presence of endogenous pathways. In our approach, we make use of endoplasmic reticulum-derived vesicles loaded with enzymes of a metabolic pathway ("metabolic vesicles"). They are generated by fusion of synthetic peptides containing the N-terminal proline-rich and self-assembling region of the maize storage protein gamma-Zein ("Zera") to the pathway enzymes. We have applied a strategy to integrate three enzymes of a cis,cis-muconic acid production pathway into those vesicles in yeast. Using fluorescence microscopy and cell fractionation techniques, we have proven the formation of metabolic vesicles and the incorporation of enzymes. Activities of the enzymes and functionality of the compartmentalized pathway were demonstrated in fermentation experiments.


Assuntos
Células Artificiais/metabolismo , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/metabolismo , Redes e Vias Metabólicas/fisiologia , Organelas/metabolismo , Difusão , Peptídeos/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
Sci Rep ; 10(1): 9780, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555375

RESUMO

Most fungal fatty acid synthases assemble from two multidomain subunits, α and ß, into a heterododecameric FAS complex. It has been recently shown that the complex assembly occurs in a cotranslational manner and is initiated by an interaction between the termini of α and ß subunits. This initial engagement of subunits may be the rate-limiting phase of the assembly and subject to cellular regulation. Therefore, we hypothesized that bypassing this step by genetically fusing the subunits could be beneficial for biotechnological production of fatty acids. To test the concept, we expressed fused FAS subunits engineered for production of octanoic acid in Saccharomyces cerevisiae. Collectively, our data indicate that FAS activity is a limiting factor of fatty acid production and that FAS fusion proteins show a superior performance compared to their split counterparts. This strategy is likely a generalizable approach to optimize the production of fatty acids and derived compounds in microbial chassis organisms.


Assuntos
Caprilatos/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fusão Gênica Artificial , Proteínas Fúngicas/genética , Expressão Gênica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética
15.
FEMS Microbiol Lett ; 367(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32053197

RESUMO

The term 'membrane transport metabolon' refers to the physical association of membrane transporters with enzymes that metabolize the transported substrates. In naturally evolved systems, physiological relevance of coupling transport with sequential enzymatic reactions resides, for instance, in faster turnover rates, protection of substrates from competing pathways or shielding the cellular environment from toxic compounds. Such underlying principles offer attractive possibilities for metabolic engineering approaches and concepts for constructing artificial transporter-enzyme complexes are recently being developed. In this minireview, the modes of substrate channeling across biological membranes and design principles for artificial transport metabolons are discussed.


Assuntos
Membranas Artificiais , Engenharia Metabólica , Membrana Celular/metabolismo , Engenharia Metabólica/tendências
16.
Front Mol Biosci ; 7: 598419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33681287

RESUMO

Human GLUT2 and GLUT3, members of the GLUT/SLC2 gene family, facilitate glucose transport in specific tissues. Their malfunction or misregulation is associated with serious diseases, including diabetes, metabolic syndrome, and cancer. Despite being promising drug targets, GLUTs have only a few specific inhibitors. To identify and characterize potential GLUT2 and GLUT3 ligands, we developed a whole-cell system based on a yeast strain deficient in hexose uptake, whose growth defect on glucose can be rescued by the functional expression of human transporters. The simplicity of handling yeast cells makes this platform convenient for screening potential GLUT2 and GLUT3 inhibitors in a growth-based manner, amenable to high-throughput approaches. Moreover, our expression system is less laborious for detailed kinetic characterization of inhibitors than alternative methods such as the preparation of proteoliposomes or uptake assays in Xenopus oocytes. We show that functional expression of GLUT2 in yeast requires the deletion of the extended extracellular loop connecting transmembrane domains TM1 and TM2, which appears to negatively affect the trafficking of the transporter in the heterologous expression system. Furthermore, single amino acid substitutions at specific positions of the transporter sequence appear to positively affect the functionality of both GLUT2 and GLUT3 in yeast. We show that these variants are sensitive to known inhibitors phloretin and quercetin, demonstrating the potential of our expression systems to significantly accelerate the discovery of compounds that modulate the hexose transport activity of GLUT2 and GLUT3.

17.
Metab Eng Commun ; 10: e00111, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31867212

RESUMO

Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 â€‹mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis.

18.
Metab Eng Commun ; 7: e00079, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30370221

RESUMO

Mandelic acid is an important aromatic fine chemical and is currently mainly produced via chemical synthesis. Recently, mandelic acid production was achieved by microbial fermentations using engineered Escherichia coli and Saccharomyces cerevisiae expressing heterologous hydroxymandelate synthases (hmaS). The best-performing strains carried a deletion of the gene encoding the first enzyme of the tyrosine biosynthetic pathway and therefore were auxotrophic for tyrosine. This was necessary to avoid formation of the competing intermediate hydroxyphenylpyruvate, the preferred substrate for HmaS, which would have resulted in the predominant production of hydroxymandelic acid. However, feeding tyrosine to the medium would increase fermentation costs. In order to engineer a tyrosine prototrophic mandelic acid-producing S. cerevisiae strain, we tested three strategies: (1) rational engineering of the HmaS active site for reduced binding of hydroxyphenylpyruvate, (2) compartmentalization of the mandelic acid biosynthesis pathway by relocating HmaS together with the two upstream enzymes chorismate mutase Aro7 and prephenate dehydratase Pha2 into mitochondria or peroxisomes, and (3) utilizing a feedback-resistant version of the bifunctional E. coli enzyme PheA (PheAfbr) in an aro7 deletion strain. PheA has both chorismate mutase and prephenate dehydratase activity. Whereas the enzyme engineering approaches were only successful in respect to reducing the preference of HmaS for hydroxyphenylpyruvate but not in increasing mandelic acid titers, we could show that strategies (2) and (3) significantly reduced hydroxymandelic acid production in favor of increased mandelic acid production, without causing tyrosine auxotrophy. Using the bifunctional enzyme PheAfbr turned out to be the most promising strategy, and mandelic acid production could be increased 12-fold, yielding titers up to 120 mg/L. Moreover, our results indicate that utilizing PheAfbr also shows promise for other industrial applications with S. cerevisiae that depend on a strong flux into the phenylalanine biosynthetic pathway.

19.
ACS Synth Biol ; 7(11): 2640-2646, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30338986

RESUMO

Short- and medium-chain fatty acids (SMCFA) are important platform chemicals currently produced from nonsustainable resources. The engineering of microbial cells to produce SMCFA, however, lacks high-throughput methods to screen for best performing cells. Here, we present the development of a whole-cell biosensor for easy and rapid detection of SMCFA. The biosensor is based on a multicopy yeast plasmid containing the SMCFA-responsive PDR12 promoter coupled to GFP as the reporter gene. The sensor detected hexanoic, heptanoic and octanoic acid over a linear range up to 2, 1.5, and 0.75 mM, respectively, but did not show a linear response to decanoic and dodecanoic acid. We validated the functionality of the biosensor with culture supernatants of a previously engineered Saccharomyces cerevisiae octanoic acid producer strain and derivatives thereof. The biosensor signal correlated strongly with the octanoic acid concentrations as determined by gas chromatography. Thus, this biosensor enables the high-throughput screening of SMCFA producers and has the potential to drastically speed up the engineering of diverse SMCFA producing cell factories.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Graxos/análise , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Cromatografia Gasosa , Ácidos Graxos/isolamento & purificação , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Biotechnol Biofuels ; 11: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881455

RESUMO

BACKGROUND: The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the ß-oxidation pathway. RESULTS: The previously engineered short-chain acyl-CoA producing yeast Fas1R1834K/Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L-1 in a 72-h fermentation. The additional accumulation of 90 mg L-1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L-1. However, in growth tests concentrations even lower than 50.0 mg L-1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to the organic phase, preventing its re-uptake. CONCLUSIONS: By providing chain length control via an engineered octanoyl-CoA producing fatty acid synthase, we were able to specifically produce 1-octanol with S. cerevisiae. Before metabolic engineering can be used to further increase product titers and yields, strategies must be developed that cope with the toxic effects of 1-octanol on the yeast cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...