Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(13): 3211-3219, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38514440

RESUMO

Binding site prediction is a crucial step in understanding protein-ligand and protein-protein interactions (PPIs) with broad implications in drug discovery and bioinformatics. This study introduces Colabind, a robust, versatile, and user-friendly cloud-based approach that employs coarse-grained molecular dynamics simulations in the presence of molecular probes, mimicking fragments of drug-like compounds. Our method has demonstrated high effectiveness when validated across a diverse range of biological targets spanning various protein classes, successfully identifying orthosteric binding sites, as well as known druggable allosteric or PPI sites, in both experimentally determined and AI-predicted protein structures, consistently placing them among the top-ranked sites. Furthermore, we suggest that careful inspection of the identified regions with a high affinity for specific probes can provide valuable insights for the development of pharmacophore hypotheses. The approach is available at https://github.com/porekhov/CG_probeMD.


Assuntos
Computação em Nuvem , Sondas Moleculares , Sítios de Ligação , Proteínas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Ligantes
2.
Nat Commun ; 14(1): 8205, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081816

RESUMO

The T5 family of viruses are tailed bacteriophages characterized by a long non-contractile tail. The bacteriophage DT57C is closely related to the paradigmal T5 phage, though it recognizes a different receptor (BtuB) and features highly divergent lateral tail fibers (LTF). Considerable portions of T5-like phages remain structurally uncharacterized. Here, we present the structure of DT57C determined by cryo-EM, and an atomic model of the virus, which was further explored using all-atom molecular dynamics simulations. The structure revealed a unique way of LTF attachment assisted by a dodecameric collar protein LtfC, and an unusual composition of the phage neck constructed of three protein rings. The tape measure protein (TMP) is organized within the tail tube in a three-stranded parallel α-helical coiled coil which makes direct contact with the genomic DNA. The presence of the C-terminal fragment of the TMP that remains within the tail tip suggests that the tail tip complex returns to its original state after DNA ejection. Our results provide a complete atomic structure of a T5-like phage, provide insights into the process of DNA ejection as well as a structural basis for the design of engineered phages and future mechanistic studies.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , DNA/metabolismo
3.
Nanomaterials (Basel) ; 12(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35159706

RESUMO

Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.

4.
Viruses ; 14(2)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35215888

RESUMO

Currently, SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) is responsible for one of the most deleterious pandemics of our time. The interaction between the ACE2 receptors at the surface of human cells and the viral Spike (S) protein triggers the infection, making the receptor-binding domain (RBD) of the SARS-CoV-2 S-protein a focal target for the neutralizing antibodies (Abs). Despite the recent progress in the development and deployment of vaccines, the emergence of novel variants of SARS-CoV-2 insensitive to Abs produced in response to the vaccine administration and/or monoclonal ones represent a potential danger. Here, we analyzed the diversity of neutralizing Ab epitopes and assessed the possible effects of single and multiple mutations in the RBD of SARS-CoV-2 S-protein on its binding affinity to various antibodies and the human ACE2 receptor using bioinformatics approaches. The RBD-Ab complexes with experimentally resolved structures were grouped into four clusters with distinct features at sequence and structure level. The performed computational analysis indicates that while single amino acid replacements in RBD may only cause partial impairment of the Abs binding, moreover, limited to specific epitopes, the variants of SARS-CoV-2 with multiple mutations, including some which were already detected in the population, may potentially result in a much broader antigenic escape. Further analysis of the existing RBD variants pointed to the trade-off between ACE2 binding and antigenic escape as a key limiting factor for the emergence of novel SAR-CoV-2 strains, as the naturally occurring mutations in RBD tend to reduce its binding affinity to Abs but not to ACE2. The results provide guidelines for further experimental studies aiming to identify high-risk RBD mutations that allow for an antigenic escape.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sítios de Ligação de Anticorpos/genética , Biologia Computacional/métodos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Ligação Proteica , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1386-1400, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726167

RESUMO

Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs.


Assuntos
Proteínas Arqueais/química , Carotenoides/química , Halobacteriaceae/química , Rodopsinas Sensoriais/química , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Membranes (Basel) ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072597

RESUMO

The search for new formulations for transdermal drug delivery (TDD) is an important field in medicine and cosmetology. Molecules with specific physicochemical properties which can increase the permeability of active ingredients across the stratum corneum (SC) are called chemical penetration enhancers (CPEs), and it was shown that some CPEs can act synergistically. In this study, we performed coarse-grained (CG) molecular dynamics (MD) simulations of the lidocaine delivery facilitated by two CPEs-linoleic acid (LA) and ethanol-through the SC model membrane containing cholesterol, N-Stearoylsphingosine (DCPE), and behenic acid. In our simulations, we probed the effects of individual CPEs as well as their combination on various properties of the SC membrane and the lidocaine penetration across it. We demonstrated that the addition of both CPEs decreases the membrane thickness and the order parameters of the DPCE hydrocarbon chains. Moreover, LA also enhances diffusion of the SC membrane components, especially cholesterol. The estimated potential of mean force (PMF) profiles for the lidocaine translocation across SC in the presence/absence of two individual CPEs and their combination demonstrated that while ethanol lowers the free energy barrier for lidocaine to enter SC, LA decreases the depth of the free energy minima for lidocaine inside SC. These two effects supposedly result in synergistic penetration enhancement of drugs. Altogether, the present simulations provide a detailed molecular picture of CPEs' action and their synergistic effect on the penetration of small molecular weight therapeutics that can be beneficial for the design of novel drug and cosmetics formulations.

7.
Sci Rep ; 11(1): 10774, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031444

RESUMO

Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected.

8.
Pharmaceutics ; 13(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430205

RESUMO

The cutaneous delivery route currently accounts for almost 10% of all administered drugs and it is becoming more common. Chemical penetration enhancers (CPEs) increase the transport of drugs across skin layers by different mechanisms that depend on the chemical nature of the penetration enhancers. In our work, we created a chemical penetration enhancer database (CPE-DB) that is, to the best of our knowledge, the first CPE database. We collected information about known enhancers and their derivatives in a single database, and classified and characterized their molecular diversity in terms of scaffold content, key chemical moieties, molecular descriptors, etc. CPE-DB can be used for virtual screening and similarity search to identify new potent and safe enhancers, building quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) models, and other machine-learning (ML) applications for the prediction of biological activity.

9.
J Biotechnol ; 325: 186-195, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157198

RESUMO

Cytochrome P450scc system performs the first rate-limiting stage of steroidogenesis in mammals. The bovine P450scc system was reconstructed in Saccharomyces cerevisiae, using a foot-and-mouth disease virus 2A peptide (F2A)-based construct, to co-express cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). During the translation of the self-processing fusion protein P450scc-F2A-Adx-F2A-AdR, the first and the second linkers are cleaved with different efficiencies (96 % and 11 %, respectively), resulting in the unbalanced expression of individual proteins. The low cleavage efficiency and the relative Adx and AdR protein levels were increased through replacing the second F2A peptide with different sequences and changing the order of Adx and AdR. The P450scc, AdR, and Adx sequences located upstream of the F2A affected F2A processing, to various degrees. Moreover, using molecular dynamics (MD) simulations, we showed that the 2A peptide fused to the C-terminus of Adx formed the steric hindrance during enzymatic complex formation, resulting in the reduction of catalytic activity. Thus, the functional activity of the reconstructed P450scc system was determined not only by the efficiency of 2A peptides but also by the overall sequence of the expressed 2A-polyprotein. Our results can be applied to the development of 2A-based co-translation strategies, to produce other multicomponent protein systems.


Assuntos
Adrenodoxina , Saccharomyces cerevisiae , Animais , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Peptídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Aging (Albany NY) ; 12(15): 15741-15755, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805729

RESUMO

The search for radioprotectors is an ambitious goal with many practical applications. Particularly, the improvement of human radioresistance for space is an important task, which comes into view with the recent successes in the space industry. Currently, all radioprotective drugs can be divided into two large groups differing in their effectiveness depending on the type of exposure. The first of these is radioprotectors, highly effective for pulsed, and some types of relatively short exposure to irradiation. The second group consists of long-acting radioprotectors. These drugs are effective for prolonged and fractionated irradiation. They also protect against impulse exposure to ionizing radiation, but to a lesser extent than short-acting radioprotectors. Creating a database on radioprotectors is a necessity dictated by the modern development of science and technology. We have created an open database, Radioprotectors.org, containing an up-to-date list of substances with proven radioprotective properties. All radioprotectors are annotated with relevant chemical and biological information, including transcriptomic data, and can be filtered according to their properties. Additionally, the performed transcriptomics analysis has revealed specific transcriptomic profiles of radioprotectors, which should facilitate the search for potent radioprotectors.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Exposição à Radiação/efeitos adversos , Protetores contra Radiação/uso terapêutico , Transcriptoma/efeitos dos fármacos , Acesso à Informação , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Humanos , Disseminação de Informação , Lesões por Radiação/etiologia , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/efeitos adversos , Protetores contra Radiação/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Transcriptoma/efeitos da radiação
11.
Biochim Biophys Acta Biomembr ; 1862(5): 183207, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987867

RESUMO

Amphiphilic maleic acid-containing copolymers account for a recent methodical breakthrough in the study of membrane proteins. Their application enables a detergent-free extraction of membrane proteins from lipid bilayers, yielding stable water-soluble, discoidal lipid bilayer particles with incorporated proteins, which are wrapped with copolymers. Although many studies confirm the potential of this approach for membrane protein research, the interactions between the maleic acid-containing copolymers and extracted lipids, as well as possible effects of the copolymers on lipid-embedded proteins deserve further scrutinization. Here, we combine electron paramagnetic resonance spectroscopy and coarse-grain molecular dynamics simulations to compare the distribution and dynamics of lipids in lipid particles of phospholipid bilayers encased either by an aliphatic diisobutylene/maleic acid copolymer (DIBMALPs) or by an aromatic styrene/maleic acid copolymer (SMALPs). Nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels experience restrictions of their reorientational motion depending on the type of encasing copolymer. The dynamics of the lipids was less constrained in DIBMALPs than in SMALPs with the affinity of spin labeled lipids to the polymeric rim being more pronounced in SMALPs.


Assuntos
Bicamadas Lipídicas/química , Maleatos/química , Nanopartículas/química , Alcenos/química , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfolipídeos , Polímeros/química , Poliestirenos/química , Marcadores de Spin/síntese química
12.
PLoS Comput Biol ; 15(8): e1007327, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469822

RESUMO

Thirteen tubulin protofilaments, made of αß-tubulin heterodimers, interact laterally to produce cytoskeletal microtubules. Microtubules exhibit the striking property of dynamic instability, manifested in their intermittent growth and shrinkage at both ends. This behavior is key to many cellular processes, such as cell division, migration, maintenance of cell shape, etc. Although assembly and disassembly of microtubules is known to be linked to hydrolysis of a guanosine triphosphate molecule in the pocket of ß-tubulin, detailed mechanistic understanding of corresponding conformational changes is still lacking. Here we take advantage of the recent generation of in-microtubule structures of tubulin to examine the properties of protofilaments, which serve as important microtubule assembly and disassembly intermediates. We find that initially straight tubulin protofilaments, relax to similar non-radially curved and slightly twisted conformations. Our analysis further suggests that guanosine triphosphate hydrolysis primarily affects the flexibility and conformation of the inter-dimer interface, without a strong impact on the shape or flexibility of αß-heterodimer. Inter-dimer interfaces are significantly more flexible compared to intra-dimer interfaces. We argue that such a difference in flexibility could be key for distinct stability of the plus and minus microtubule ends. The higher flexibility of the inter-dimer interface may have implications for development of pulling force by curving tubulin protofilaments during microtubule disassembly, a process of major importance for chromosome motions in mitosis.


Assuntos
Tubulina (Proteína)/química , Fenômenos Biomecânicos , Biologia Computacional , Microscopia Crioeletrônica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
13.
Aging (Albany NY) ; 11(8): 2378-2387, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31002655

RESUMO

All living organisms are subject to the aging process and experience the effect of ionizing radiation throughout their life. There have been a number of studies that linked ionizing radiation process to accelerated aging, but comprehensive signalome analysis of both processes was rarely conducted. Here we present a comparative signaling pathway based analysis of the transcriptomes of fibroblasts irradiated with different doses of ionizing radiation, replicatively aged fibroblasts and fibroblasts collected from young, middle age and old patients. We demonstrate a significant concordance between irradiation-induced and replicative senescence signalome signatures of fibroblasts. Additionally, significant differences in transcriptional response were also observed between fibroblasts irradiated with high and low dose. Our data shows that the transcriptome of replicatively aged fibroblasts is more similar to the transcriptome of the cells irradiated with 2 Gy, than with 5 сGy.This work revealed a number of signaling pathways that are shared between senescence and irradiation processes and can potentially be targeted by the new generation of gero- and radioprotectors.


Assuntos
Envelhecimento/genética , Senescência Celular/efeitos da radiação , Fibroblastos/efeitos da radiação , Radiação Ionizante , Transcriptoma/efeitos da radiação , Adulto , Fatores Etários , Idoso , Envelhecimento/efeitos da radiação , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade
14.
Langmuir ; 35(10): 3748-3758, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30773011

RESUMO

Amphiphilic copolymers composed of styrene and maleic acid (SMA) monomers caused a major methodical breakthrough in the study of membrane proteins. They were found to directly release phospholipids and membrane proteins both from artificial and natural lipid bilayers, yielding stable water-soluble discoidal SMA/lipid particles (SMALPs) of uniform size. Although many empirical studies indicate the great potency of SMALPs for membrane protein research, the mechanisms of their formation remain obscure. It is unknown which factors account for the very assembly of SMALPs and govern their uniform size. We have developed a coarse-grained (CG) molecular model of SMA copolymers based on the MARTINI CG force field and used it to probe the behavior of SMA copolymers with varying composition/charge/concentration in solution as well as their interaction with lipid membranes. First, we found that SMA copolymers tend to aggregate in solution into clusters, which could account for the uniform size of SMALPs. Next, molecular dynamics (MD) simulations showed that periodic SMA copolymers with styrene/maleic acid ratios of 2:1 ([SSM] n) and 3:1 ([SSSM] n) differently interacted with lipid bilayers. While clusters of 2:1 SMA copolymers induced membrane poration, the clusters of 3:1 SMA copolymers extracted lipid patches from the membrane yielding SMALP-like structures. Extraction of lipid patches was also observed when we simulated the behavior of 3:1 copolymers with varying lengths and statistical distribution of styrene and MA units. Analysis of MD simulation trajectories and comparison with experimental data indicate that the formation of SMALPs requires copolymer molecules with a sufficient number of units made of more than two sequential styrene monomers.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Maleatos/química , Polímeros/química , Estireno/química , Tamanho da Partícula , Propriedades de Superfície
15.
J Phys Chem B ; 122(14): 3711-3722, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29553736

RESUMO

Phthalocyanines are aromatic macrocyclic compounds, which are structurally related to porphyrins. In clinical practice, phthalocyanines are used in fluorescence imaging and photodynamic therapy of cancer and noncancer lesions. Certain forms of the substituted polycationic metallophthalocyanines have been previously shown to be active in photodynamic inactivation of both Gram-negative and Gram-positive bacteria; one of them is zinc octakis(cholinyl)phthalocyanine (ZnPcChol8+). However, the molecular details of how these compounds translocate across bacterial membranes still remain unclear. In the present work, we have developed a coarse-grained (CG) molecular model of ZnPcChol8+ within the framework of the popular MARTINI CG force field. The obtained model was used to probe the solvation behavior of phthalocyanine molecules, which agreed with experimental results. Subsequently, it was used to investigate the molecular details of interactions between phthalocyanines and membranes of various compositions. The results demonstrate that ZnPcChol8+ has high affinity to both the inner and the outer model membranes of Gram-negative bacteria, although this species does not show noticeable affinity to the 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphatidylcholine membrane. Furthermore, we found out that the process of ZnPcChol8+ penetration toward the center of the outer bacterial membrane is energetically favorable and leads to its overall disturbance and formation of the aqueous pore. Such intramembrane localization of ZnPcChol8+ suggests their twofold cytotoxic effect on bacterial cells: (1) via induction of lipid peroxidation by enhanced production of reactive oxygen species (i.e., photodynamic toxicity); (2) via rendering the bacterial membrane more permeable for additional Pc molecules as well as other compounds. We also found that the kinetics of penetration depends on the presence of phospholipid defects in the lipopolysaccharide leaflet of the outer membrane and the type of counterions, which stabilize it. Thus, the results of our simulations provide a detailed molecular view of ZnPcChol8+ "self-promoted uptake", the pathway previously proposed for some small molecules crossing the outer bacterial membrane.

16.
PLoS Comput Biol ; 11(10): e1004561, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496122

RESUMO

Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors.


Assuntos
Halobacteriaceae/química , Modelos Químicos , Simulação de Dinâmica Molecular , Estimulação Luminosa/métodos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/ultraestrutura , Adaptação Ocular/efeitos da radiação , Proteínas Arqueais/química , Proteínas Arqueais/efeitos da radiação , Proteínas Arqueais/ultraestrutura , Carotenoides/química , Carotenoides/efeitos da radiação , Simulação por Computador , Halobacteriaceae/efeitos da radiação , Luz , Modelos Biológicos , Fotorreceptores Microbianos/efeitos da radiação , Conformação Proteica/efeitos da radiação , Doses de Radiação
17.
PLoS One ; 9(7): e102487, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25019215

RESUMO

Oxidative stress induced by excessive production of reactive oxygen species (ROS) has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3) and D3-tris-malonyl-C60-fullerene (D3)-through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD) simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.


Assuntos
Antioxidantes/farmacologia , Fulerenos/química , Bicamadas Lipídicas/metabolismo , Adsorção , Antioxidantes/química , Transporte Biológico , Fulerenos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...