Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
J Am Chem Soc ; 146(19): 12877-12882, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710014

RESUMO

The use of single-molecule microscopy is introduced as a method to quantify the photophysical properties of supramolecular complexes rapidly at ultra low concentrations (<1 nM), previously inaccessible. Using a model supramolecular system based on the host-guest complexation of cucurbit[n]uril (CB[n]) macrocycles together with a fluorescent guest (Ant910Me), we probe fluorescent CB[n] host-guest complexes in the single molecule regime. We show quantification and differentiation of host-guest photophysics and stoichiometries, both in aqueous media and noninvasively in hydrogel, by thresholding detected photons. This methodology has wide reaching implications in aiding the design of next-generation materials with programmed and controlled properties.

2.
Waste Manag ; 174: 351-361, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091659

RESUMO

The barrier performance of geosynthetic clay liners (GCLs) to coal combustion products (CCPs) is of primary importance. One of the CCPs leachates that has a damaging effect on hydraulic conductivity is trona ash leachate (TAL). In this study, the hydraulic conductivity of sodium GCL (Na-GCL) to TAL was investigated in terms of mass per unit area (MPUA). The hydraulic conductivity of GCLs to TAL was 2.6 × 10-6 and 7.6 × 10-7 m/s when the MPUA was 3.0 kg/m2 (Mb3) and 4.0 kg/m2 (Mb4), respectively. Dye tests conducted on these GCLs showed that flow preferentially occurred through bundles of fibers existing in the GCLs. In contrast, increasing the MPUA to 5.0 kg/m2 (Mb5) led to a decrease in the hydraulic conductivity (i.e. 4.1 × 10-11 m/s). Additional tests were performed on fiber-free GCLs to determine the role of fiber bundles. Regardless of MPUA, the fiber-free GCLs had low hydraulic conductivity (6.7 × 10-11 m/s). Prehydrating Mb3 and Mb4 with deionized water (DIW) before permeation with TAL also decreased the hydraulic conductivity. The hydraulic conductivities of prehydrated Mb3 and Mb4 were 1.6 × 10-10 and 4.8 × 10-11, respectively. Chemical analyses showed that the cation exchange reaction had a negligible influence on the hydraulic conductivity. Because TAL was a potential source of Na+ throughout the tests.


Assuntos
Eliminação de Resíduos , Argila , Silicatos de Alumínio , Bicarbonatos
3.
Nature ; 623(7989): 949-955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38030777

RESUMO

Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.

4.
ACS Nanosci Au ; 3(2): 161-171, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096231

RESUMO

A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) "mix-and-measure" protocols, in which FeIII bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from PreNP PSALM are significantly lower than those of PostNP PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.

5.
Adv Mater ; 35(1): e2207634, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314408

RESUMO

Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced. Rational design of an ultrahigh affinity host-guest ternary complex led to binding affinities (>1013  M-2 ) of over an order of magnitude greater than previous reports. Embedding these complexes as dynamic cross-links, coupled with in situ synthesis of a conducting polymer, resulted in electrically conductive supramolecular polymer networks with tissue-mimetic Young's moduli (<5 kPa), high stretchability (>500%), rapid self-recovery and high water content (>84%). Achieving such properties enabled fabrication of intrinsically-stretchable stand-alone bioelectrodes, capable of accurately monitoring electromyography signals, free from any rigid materials.


Assuntos
Eletrônica , Polímeros , Humanos , Polímeros/química , Módulo de Elasticidade , Condutividade Elétrica , Hidrogéis/química
6.
Proc Natl Acad Sci U S A ; 119(49): e2212497119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454753

RESUMO

Nanoconfined few-molecule water clusters are invaluable systems to study fundamental aspects of hydrogen bonding. Unfortunately, most experiments on water clusters must be performed at cryogenic temperatures. Probing water clusters in noncryogenic systems is however crucial to understand the behavior of confined water in atmospheric or biological settings, but such systems usually require either complex synthesis and/or introduce many confounding external bonds to the clusters. Here, we show that combining Raman spectroscopy with the molecular nanocapsule cucurbituril is a powerful technique to sequester and analyze water clusters in ambient conditions. We observe sharp peaks in vibrational spectra arising from a single rigid confined water dimer. The high resolution and rich information in these vibrational spectra allow us to track specific isotopic exchanges inside the water dimer, verified with density-functional theory and kinetic population modeling. We showcase the versatility of such molecular nanocapsules by tracking water cluster vibrations through systematic changes in confinement size, in temperatures up to 120° C, and in their chemical environment.


Assuntos
Nanocápsulas , Vibração , Água , Polímeros , Análise Espectral Raman
7.
Chem Sci ; 13(30): 8791-8796, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975157

RESUMO

Extended polymeric structures based on redox-active species are of great interest in emerging technologies related to energy conversion and storage. However, redox-active monomers tend to inhibit radical polymerisation processes and hence, increase polydispersity and reduce the average molecular weight of the resultant polymers. Here, we demonstrate that styrenic viologens, which do not undergo radical polymerisation effectively on their own, can be readily copolymerised in the presence of cucurbit[n]uril (CB[n]) macrocycles. The presented strategy relies on pre-encapsulation of the viologen monomers within the molecular cavities of the CB[n] macrocycle. Upon polymerisation, the molecular weight of the resultant polymer was found to be an order of magnitude higher and the polydispersity reduced 5-fold. The mechanism responsible for this enhancement was unveiled through comprehensive spectroscopic and electrochemical studies. A combination of solubilisation/stabilisation of reduced viologen species as well as protection of the parent viologens against reduction gives rise to the higher molar masses and reduced polydispersities. The presented study highlights the potential of CB[n]-based host-guest chemistry to control both the redox behavior of monomers as well as the kinetics of their radical polymerisation, which will open up new opportunities across myriad fields.

8.
Adv Healthc Mater ; 11(18): e2200739, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35871265

RESUMO

Implantable electronic medical devices are used in functional mapping of the brain before surgery and to deliver neuromodulation for the treatment of neurological and neuropsychiatric disorders. Their electrode arrays are assembled by hand, and this leads to bulky form factors with limited flexibility and low electrode counts. Thin film implants, made using microfabrication techniques, are emerging as an attractive alternative, as they offer dramatically improved conformability and enable high density recording and stimulation. A major limitation of these devices, however, is that they are invisible to fluoroscopy, the most common method used to monitor the insertion of implantable electrodes. Here, the development of mechanically flexible X-ray markers using bismuth- and barium-infused elastomers is reported. Their X-ray attenuation properties in human cadavers are explored and it is shown that they are biocompatible in cell cultures. It is further shown that they do not distort magnetic resonance imaging images and their integration with thin film implants is demonstrated. This work removes a key barrier for the adoption of thin film implants in brain mapping and in neuromodulation.


Assuntos
Bismuto , Elastômeros , Bário , Eletrodos Implantados , Humanos , Raios X
9.
Angew Chem Int Ed Engl ; 61(34): e202206562, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723924

RESUMO

To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.


Assuntos
Fótons , Plásticos , Norbornanos , Polietilenoglicóis , Polímeros
10.
J Am Chem Soc ; 144(19): 8474-8479, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35535953

RESUMO

Peptide dimerization is ubiquitous in natural protein conjugates and artificial self-assemblies. A major challenge in artificial systems remains achieving quantitative peptide heterodimerization, critical for next-generation biomolecular purification and formulation of therapeutics. Here, we employ a synthetic host to simultaneously encapsulate an aromatic and a noncanonical l-perfluorophenylalanine-containing peptide through embedded polar-π interactions, constructing an unprecedented series of heteropeptide dimers. To demonstrate the utility, this heteropeptide dimerization strategy was applied toward on-resin recognition of N-terminal aromatic residues in peptides as well as insulin, both exhibiting high recycling efficiency (>95%). This research unveils a generic approach to exploit quantitative heteropeptide dimers for the design of supramolecular (bio)systems.


Assuntos
Oligopeptídeos , Proteínas , Dimerização , Oligopeptídeos/química , Peptídeos/química
11.
Adv Mater ; 34(23): e2201577, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35365942

RESUMO

Insight into fiber formation can provide new rationale for the design and preparation of fibers with programmed mechanical properties. While synthetic bioinspired fibers have shown impressive tensile properties, the fiber formation process remains poorly understood. Moreover, these systems are highly complex and their formation is environmentally and economically costly. Controlled fiber formation under ambient conditions from polyacrylamide solutions with properties comparable to natural fibers such as wool and coir is demonstrated. Photopolymerization and subsequent microscale fibrillation of different acrylamides in water/ethanol mixtures yield a simple and energy-efficient route to fiber formation. This strategy reduces required processing energy by two-to-three orders of magnitude. Through extensive experimental elucidation, insight into precise fiber forming conditions of polymeric solutions is achieved. Ethanol is utilized as a chain transfer agent to control the molecular weight of the polyacrylamides, and the entanglement regimes of the solutions are determined through rheological characterization showing fiber formation above the entanglement concentration. Unique from previously reported hydrogel microfibers, it is shown that fibers with good mechanical properties can be obtained without the need for composites or crosslinkers. The reported approach offers a platform for fiber formation under ambient conditions with molecular-level understanding of their assembly.

12.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408595

RESUMO

The encapsulation of proteins into core-shell structures is a widely utilised strategy for controlling protein stability, delivery and release. Despite the recognised utility of these microstructures, however, core-shell fabrication routes are often too costly or poorly scalable to allow for industrial translation. Furthermore, many scalable routes rely upon emulsion-techniques implicating denaturing or environmentally harmful organic solvents. Herein, we investigate core-shell protein encapsulation through single-feed, aqueous spray drying: a cheap, industrially ubiquitous particle-formation technology in the absence of organic solvents. We show that an excipient's preference for the surface of the spray dried particle is well-predicted by its hydrodynamic diameter (Dh) under relevant feed buffer conditions (pH and ionic strength) and that the predictive power of Dh is improved when measured at the spray dryer outlet temperature compared to room temperature (R2 = 0.64 vs. 0.59). Lastly, we leverage these findings to propose an adaptable design framework for fabricating core-shell protein encapsulates by single-feed aqueous spray drying.


Assuntos
Proteínas , Água , Emulsões , Tamanho da Partícula , Pós , Solventes , Temperatura , Água/química
13.
J Bronchology Interv Pulmonol ; 29(2): 125-130, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347696

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to hypoxemic respiratory failure resulting in prolonged mechanical ventilation. Typically, tracheostomy is considered in patients who remain ventilator dependent beyond 2 weeks. However, in the setting of this novel respiratory virus, the safety and benefits of tracheostomy are not well-defined. Our aim is to describe our experience with percutaneous tracheostomy in patients with COVID-19. MATERIALS AND METHODS: This is a single center retrospective descriptive study. We reviewed comorbidities and outcomes in patients with respiratory failure due to COVID-19 who underwent percutaneous tracheostomy at our institution from April 2020 to September 2020. In addition, we provide details of our attempt to minimize aerosolization by using a modified protocol with brief periods of planned apnea. RESULTS: A total of 24 patients underwent percutaneous tracheostomy during the study. The average body mass index was 33.0±10.0. At 30 days posttracheostomy 17 (71%) patients still had the tracheostomy tube and 14 (58%) remained ventilator dependent. There were 3 (13%) who died within 30 days. At the time of data analysis in November 2020, 9 (38%) patients had died and 7 (29%) had been decannulated. None of the providers who participated in the procedure experienced signs or symptoms of COVID-19 infection. CONCLUSION: Percutaneous tracheostomy in prolonged respiratory failure due to COVID-19 appears to be safe to perform at the bedside for both the patient and health care providers in the appropriate clinical context. Morbid obesity did not limit the ability to perform percutaneous tracheostomy in COVID-19 patients.


Assuntos
COVID-19 , Insuficiência Respiratória , COVID-19/complicações , Humanos , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Estudos Retrospectivos , SARS-CoV-2 , Traqueostomia/efeitos adversos , Traqueostomia/métodos
14.
Nat Mater ; 21(1): 103-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819661

RESUMO

Supramolecular polymer networks are non-covalently crosslinked soft materials that exhibit unique mechanical features such as self-healing, high toughness and stretchability. Previous studies have focused on optimizing such properties using fast-dissociative crosslinks (that is, for an aqueous system, dissociation rate constant kd > 10 s-1). Herein, we describe non-covalent crosslinkers with slow, tuneable dissociation kinetics (kd < 1 s-1) that enable high compressibility to supramolecular polymer networks. The resultant glass-like supramolecular networks have compressive strengths up to 100 MPa with no fracture, even when compressed at 93% strain over 12 cycles of compression and relaxation. Notably, these networks show a fast, room-temperature self-recovery (< 120 s), which may be useful for the design of high-performance soft materials. Retarding the dissociation kinetics of non-covalent crosslinks through structural control enables access of such glass-like supramolecular materials, holding substantial promise in applications including soft robotics, tissue engineering and wearable bioelectronics.


Assuntos
Matriz Extracelular , Polímeros , Hidrogéis/química , Polímeros/química , Engenharia Tecidual , Água
15.
Angew Chem Weinheim Bergstr Ger ; 134(34): e202206562, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38504795

RESUMO

To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.

16.
ACS Sens ; 6(12): 4507-4514, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34882398

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is considered an attractive candidate for quantitative and multiplexed molecular sensing of analytes whose chemical composition is not fully known. In principle, molecules can be identified through their fingerprint spectrum when binding inside plasmonic hotspots. However, competitive binding experiments between methyl viologen (MV2+) and its deuterated isomer (d8-MV2+) here show that determining individual concentrations by extracting peak intensities from spectra is not possible. This is because analytes bind to different binding sites inside and outside of hotspots with different affinities. Only by knowing all binding constants and geometry-related factors, can a model revealing accurate concentrations be constructed. To collect sufficiently reproducible data for such a sensitive experiment, we fully automate measurements using a high-throughput SERS optical system integrated with a liquid handling robot (the SERSbot). This now allows us to accurately deconvolute analyte mixtures through independent component analysis (ICA) and to quantitatively map out the competitive binding of analytes in nanogaps. Its success demonstrates the feasibility of automated SERS in a wide variety of experiments and applications.


Assuntos
Análise Espectral Raman , Automação
17.
New Microbes New Infect ; 44: 100932, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34631108

RESUMO

In the mid-1990s, the category 'Candidatus' was established for putative taxa of as yet uncultivated prokaryotes. The status of 'Candidatus' is not formally included in the rules of the International Code of Nomenclature of Prokaryotes. Thus, 'Candidatus' names do not have standing in the nomenclature. Curated annotated lists of 'Candidatus' names (not including phyla) have been published since 2020. By April 2021, about 2700 names of 'Candidatus' taxa had been published. The International Committee on Systematics of Prokaryotes recently rejected proposals to allow gene sequence data as nomenclatural types. An alternative code for naming uncultivated microorganisms (the 'SeqCode') is now being developed for naming the majority of prokaryotes that are as yet uncultivated. In the opinion of the author, there is no need for such a code, as the existing system, with nomenclature quality control also for 'Candidatus' names, fulfills the needs. Computer programs such as GAN which generates large numbers of correctly formed names from the short lists of Latin and Greek word elements and Protologger that produce descriptions directly from genome sequences will become important in the future for automated naming and description of large numbers of 'Candidatus' taxa from metagenomic and single cell genome data. However, the formation of interesting and meaningful names is encouraged whenever possible.

18.
Nat Nanotechnol ; 16(10): 1121-1129, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34475556

RESUMO

Nature controls the assembly of complex architectures through self-limiting processes; however, few artificial strategies to mimic these processes have been reported to date. Here we demonstrate a system comprising two types of nanocrystal (NC), where the self-limiting assembly of one NC component controls the aggregation of the other. Our strategy uses semiconducting InP/ZnS core-shell NCs (3 nm) as effective assembly modulators and functional nanoparticle surfactants in cucurbit[n]uril-triggered aggregation of AuNCs (5-60 nm), allowing the rapid formation (within seconds) of colloidally stable hybrid aggregates. The resultant assemblies efficiently harvest light within the semiconductor substructures, inducing out-of-equilibrium electron transfer processes, which can now be simultaneously monitored through the incorporated surface-enhanced Raman spectroscopy-active plasmonic compartments. Spatial confinement of electron mediators (for example, methyl viologen (MV2+)) within the hybrids enables the direct observation of photogenerated radical species as well as molecular recognition in real time, providing experimental evidence for the formation of elusive σ-(MV+)2 dimeric species. This approach paves the way for widespread use of analogous hybrids for the long-term real-time tracking of interfacial charge transfer processes, such as the light-driven generation of radicals and catalysis with operando spectroscopies under irreversible conditions.

19.
J Am Chem Soc ; 143(34): 13557-13572, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357768

RESUMO

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery.


Assuntos
Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Polietilenoglicóis/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Simulação de Dinâmica Molecular , Nanopartículas/química , Fosfatos/química
20.
Biomaterials ; 276: 120919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419838

RESUMO

Peptide functionalized hyaluronic acid (HACF) cross-linked by cucurbit[8]uril (CB[8]), a new class of drug-delivery reservoirs, is used to enable improved drug bioavailability for glioblastoma tumors in patient-derived xenograft (PDX) models. The mechanical and viscoelastic properties of native human and mouse tissues are measured over 8 h via oscillatory rheology under physiological conditions. Treatment with drug-loaded hydrogels allowed for a significant survival impact of 45 % (55.5-80.5 days). A relationship between the type of PDX tumor formed-a consequence of the heterogeneic nature of GB tumors-and changes in the initial survival is observed owing to greater local pressure from stiffer tumors. These biocompatible and tailorable materials warrant use as drug delivery reservoirs in PDX resection models, where the mechanical properties can be readily adjusted to match the stiffness of local tissue and thus have potential to improve the survival of GB patients.


Assuntos
Glioblastoma , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Humanos , Ácido Hialurônico , Hidrogéis , Camundongos , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...