Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253487

RESUMO

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing we assessed lower respiratory tract immune responses and microbiome dynamics in 23 COVID-19 patients, 10 of whom developed VAP, and eight critically ill uninfected controls. At a median of three days (range: 2-4 days) before VAP onset we observed a transcriptional signature of bacterial infection. At a median of 15 days prior to VAP onset (range: 8-38 days), we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-412809

RESUMO

In this study, we developed ACE2-specific, peptide-derived 68Ga-labeled radiotracers, motivated by the hypotheses that (1) ACE2 is an important determinant of SARS-CoV-2 susceptibility, and (2) that modulation of ACE2 in COVID-19 drives severe organ injury. MethodsA series of NOTA-conjugated peptides derived from the known ACE2 inhibitor DX600 were synthesized, with variable linker identity. Since DX600 bears two cystine residues, both linear and cyclic peptides were studied. An ACE2 inhibition assay was used to identify lead compounds, which were labeled with 68Ga to generate peptide radiotracers ([68Ga]NOTA-PEP). The aminocaproate-derived radiotracer [68Ga]NOTA-PEP4 was subsequently studied in a humanized ACE2 (hACE2) transgenic model. ResultsCyclic DX-600 derived peptides had markedly lower IC50s than their linear counterparts. The three cyclic peptides with triglycine, aminocaproate, and polyethylene glycol linkers had calculated IC50s similar to, or lower than the parent DX600 molecule. Peptides were readily labeled with 68Ga, and the biodistribution of [68Ga]NOTA-PEP4 was determined in a hACE2 transgenic murine cohort. Pharmacologic concentrations of co-administered NOTA-PEP ("blocking") showed significant reduction of [68Ga]NOTA-PEP4 signals in the in the heart, liver, lungs, and small intestine. Ex vivo hACE2 activity in these organs was confirmed as a correlate to in vivo results. ConclusionsNOTA-conjugated, cyclic peptides derived from the known ACE2 inhibitor DX600 retain their activity when N-conjugated for 68Ga chelation. In vivo studies in a transgenic hACE2 murine model using the lead tracer [68Ga]NOTA-PEP4 showed specific binding in the heart, liver, lungs and intestine - organs known to be affected in SARS-CoV-2 infection. These results suggest that [68Ga]NOTA-PEP4 could be used to detect organ-specific suppression of ACE2 in SARS-CoV-2 infected murine models and COVID-19 patients. TOC figure O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=44 SRC="FIGDIR/small/412809v1_ufig1.gif" ALT="Figure 1"> View larger version (18K): org.highwire.dtl.DTLVardef@f3047org.highwire.dtl.DTLVardef@12ab9a9org.highwire.dtl.DTLVardef@33f43org.highwire.dtl.DTLVardef@12e77ed_HPS_FORMAT_FIGEXP M_FIG For Table of Contents use only C_FIG

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-109157

RESUMO

A serious public health crisis is currently unfolding due to the SARS-CoV-2 pandemic. SARS-CoV-2 viral entry depends on an interaction between the receptor binding domain of the trimeric viral Spike protein (Spike-RBD) and the dimeric human angiotensin converting enzyme 2 (ACE2) receptor. While it is clear that strategies to block the Spike/ACE2 interaction are promising as anti-SARS-CoV-2 therapeutics, our current understanding is insufficient for the rational design of maximally effective therapeutic molecules. Here, we investigated the mechanism of Spike/ACE2 interaction by characterizing the binding affinity and kinetics of different multimeric forms of recombinant ACE2 and Spike-RBD domain. We also engineered ACE2 into a split Nanoluciferase-based reporter system to probe the conformational landscape of Spike-RBDs in the context of the Spike trimer. Interestingly, a dimeric form of ACE2, but not monomeric ACE2, binds with high affinity to Spike and blocks viral entry in pseudotyped virus and live SARS-CoV-2 virus neutralization assays. We show that dimeric ACE2 interacts with an RBD on Spike with limited intra-Spike avidity, which nonetheless contributes to the affinity of this interaction. Additionally, we demonstrate that a proportion of Spike can simultaneously interact with multiple ACE2 dimers, indicating that more than one RBD domain in a Spike trimer can adopt an ACE2-accessible "up" conformation. Our findings have significant implications on the design strategies of therapeutic molecules that block the Spike/ACE2 interaction. The constructs we describe are freely available to the research community as molecular tools to further our understanding of SARS-CoV-2 biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...