Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365982

RESUMO

Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.


Assuntos
Bacillus , Mycobacterium tuberculosis , Animais , Humanos , Mycobacterium tuberculosis/genética , Genômica
2.
PLoS Pathog ; 19(7): e1011437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37450466

RESUMO

The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Tuberculose/microbiologia , Mamíferos
3.
Immunity ; 56(6): 1204-1219.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160119

RESUMO

During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.


Assuntos
Organogênese , Fatores de Transcrição , Diferenciação Celular , Linfonodos , Tecido Linfoide
4.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006663

RESUMO

Current models of horizontal gene transfer (HGT) in mycobacteria are based on "distributive conjugal transfer" (DCT), an HGT type described in the fast-growing, saprophytic model organism Mycobacterium smegmatis, which creates genome mosaicism in resulting strains and depends on an ESX-1 type VII secretion system. In contrast, only few data on interstrain DNA transfer are available for tuberculosis-causing mycobacteria, for which chromosomal DNA transfer between two Mycobacterium canettii strains was reported, a process which, however, was not observed for Mycobacterium tuberculosis strains. Here, we have studied a wide range of human- and animal-adapted members of the Mycobacterium tuberculosis complex (MTBC) using an optimized filter-based mating assay together with three selected strains of M. canettii that acted as DNA recipients. Unlike in previous approaches, we obtained a high yield of thousands of recombinants containing transferred chromosomal DNA fragments from various MTBC donor strains, as confirmed by whole-genome sequence analysis of 38 randomly selected clones. While the genome organizations of the obtained recombinants showed mosaicisms of donor DNA fragments randomly integrated into a recipient genome backbone, reminiscent of those described as being the result of ESX-1-mediated DCT in M. smegmatis, we observed similar transfer efficiencies when ESX-1-deficient donor and/or recipient mutants were used, arguing that in tubercle bacilli, HGT is an ESX-1-independent process. These findings provide new insights into the genetic events driving the pathoevolution of M. tuberculosis and radically change our perception of HGT in mycobacteria, particularly for those species that show recombinogenic population structures despite the natural absence of ESX-1 secretion systems.IMPORTANCE Data on the bacterial sex-mediated impact on mycobacterial evolution are limited. Hence, our results presented here are of importance as they clearly demonstrate the capacity of a wide range of human- and animal-adapted Mycobacterium tuberculosis complex (MTBC) strains to transfer chromosomal DNA to selected strains of Mycobacteriumcanettii Most interestingly, we found that interstrain DNA transfer among tubercle bacilli was not dependent on a functional ESX-1 type VII secretion system, as ESX-1 deletion mutants of potential donor and/or recipient strains yielded numbers of recombinants similar to those of their respective parental strains. These results argue that HGT in tubercle bacilli is organized in a way different from that of the most widely studied Mycobacterium smegmatis model, a finding that is also relevant beyond tubercle bacilli, given that many mycobacteria, like, for example, Mycobacterium avium or Mycobacterium abscessus, are naturally devoid of an ESX-1 secretion system but show recombinogenic, mosaic-like genomic population structures.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , DNA/genética , Evolução Molecular , Técnicas de Transferência de Genes , Mycobacterium tuberculosis/genética , Cromossomos/genética , Conjugação Genética , Genoma Bacteriano
5.
Microb Genom ; 7(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529148

RESUMO

Mycobacterium microti is an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC), which was originally isolated from voles, but has more recently also been isolated from other selected mammalian hosts, including occasionally from humans. Here, we have generated and analysed the complete genome sequences of five representative vole and clinical M. microti isolates using PacBio- and Illumina-based technologies, and have tested their virulence and vaccine potential in SCID (severe combined immune deficient) mouse and/or guinea pig infection models. We show that the clinical isolates studied here cluster separately in the phylogenetic tree from vole isolates and other clades from publicly available M. microti genome sequences. These data also confirm that the vole and clinical M. microti isolates were all lacking the specific RD1mic region, which in other tubercle bacilli encodes the ESX-1 type VII secretion system. Biochemical analysis further revealed marked phenotypic differences between isolates in type VII-mediated secretion of selected PE and PPE proteins, which in part were attributed to specific genetic polymorphisms. Infection experiments in the highly susceptible SCID mouse model showed that the clinical isolates were significantly more virulent than the tested vole isolates, but still much less virulent than the M. tuberculosis H37Rv control strain. The strong attenuation of the ATCC 35872 vole isolate in immunocompromised mice, even compared to the attenuated BCG (bacillus Calmette-Guérin) vaccine, and its historic use in human vaccine trials encouraged us to test this strain's vaccine potential in a guinea pig model, where it demonstrated similar protective efficacy as a BCG control, making it a strong candidate for vaccination of immunocompromised individuals in whom BCG vaccination is contra-indicated. Overall, we provide new insights into the genomic and phenotypic variabilities and particularities of members of an understudied clade of the MTBC, which all share a recent common ancestor that is characterized by the deletion of the RD1mic region.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Deleção de Genes , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Tuberculose/prevenção & controle , Sequenciamento Completo do Genoma/métodos , Animais , Arvicolinae/microbiologia , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Cobaias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Filogenia
6.
Nat Commun ; 11(1): 684, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019932

RESUMO

Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted "modern" lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact "ancestral" lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Animais , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Filogenia , Deleção de Sequência , Virulência
7.
Cell Rep ; 23(4): 1072-1084, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694886

RESUMO

The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs) of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II.


Assuntos
Sistemas de Secreção Bacterianos/imunologia , Epitopos de Linfócito T/imunologia , Granuloma do Sistema Respiratório , Mycobacterium tuberculosis/imunologia , Fagócitos , Tuberculose Pulmonar , Animais , Linhagem Celular Tumoral , Granuloma do Sistema Respiratório/imunologia , Granuloma do Sistema Respiratório/microbiologia , Granuloma do Sistema Respiratório/patologia , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Fagócitos/imunologia , Fagócitos/microbiologia , Fagócitos/patologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
8.
Development ; 145(7)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29511024

RESUMO

Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development.


Assuntos
Diferenciação Celular/genética , Galinhas/metabolismo , Tecido Conjuntivo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Galinhas/genética , Clonagem Molecular , Extremidades , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Morfogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transdução de Sinais , Dedos de Zinco/genética
9.
Biol Open ; 7(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29183907

RESUMO

The sequence of the chicken genome, like several other draft genome sequences, is presently not fully covered. Gaps, contigs assigned with low confidence and uncharacterized chromosomes result in gene fragmentation and imprecise gene annotation. Transcript abundance estimation from RNA sequencing (RNA-seq) data relies on read quality, library complexity and expression normalization. In addition, the quality of the genome sequence used to map sequencing reads, and the gene annotation that defines gene features, must also be taken into account. A partially covered genome sequence causes the loss of sequencing reads from the mapping step, while an inaccurate definition of gene features induces imprecise read counts from the assignment step. Both steps can significantly bias interpretation of RNA-seq data. Here, we describe a dual transcript-discovery approach combining a genome-guided gene prediction and a de novo transcriptome assembly. This dual approach enabled us to increase the assignment rate of RNA-seq data by nearly 20% as compared to when using only the chicken reference annotation, contributing therefore to a more accurate estimation of transcript abundance. More generally, this strategy could be applied to any organism with partial genome sequence and/or lacking a manually-curated reference annotation in order to improve the accuracy of gene expression studies.

10.
Curr Opin Microbiol ; 41: 68-75, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29216510

RESUMO

Mycobacterium tuberculosis, the causative agent of human tuberculosis is one of the most widely spread human pathogens. It has succeeded to infect a quarter of the global human population by developing most sophisticated ways to circumvent innate and adaptive immune defences. This highly specialized, major human pathogen has evolved from a pool of ancestral environmental mycobacteria, whose extant representatives are known under the name of Mycobacterium canettii. Recent whole genome analyses in combination with different phenotypic screens have provided key insights into the evolution of M. tuberculosis and closely related members regrouped in the M. tuberculosis complex (MTBC). They have also elucidated novel virulence determinants that are essential for these obligate pathogens. In this review, we present the most recent evolutionary models of the MTBC and various factors that have contributed to the outstanding evolutionary success of the tuberculosis agent.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Genoma Bacteriano , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mycobacterium tuberculosis/imunologia , Filogenia , Tuberculose/imunologia , Tuberculose/microbiologia , Virulência , Fatores de Virulência/genética
11.
Sci Rep ; 7(1): 16153, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170465

RESUMO

Beige adipocyte differentiation within white adipose tissue, referred to as browning, is seen as a possible mechanism for increasing energy expenditure. The molecular regulation underlying the thermogenic browning process has not been entirely elucidated. Here, we identify the zinc finger transcription factor EGR1 as a negative regulator of the beige fat program. Loss of Egr1 in mice promotes browning in the absence of external stimulation and leads to an increase of Ucp1 expression, which encodes the key thermogenic mitochondrial uncoupling protein-1. Moreover, EGR1 is recruited to the proximal region of the Ucp1 promoter in subcutaneous inguinal white adipose tissue. Transcriptomic analysis of subcutaneous inguinal white adipose tissue in the absence of Egr1 identifies the molecular signature of white adipocyte browning downstream of Egr1 deletion and highlights a concomitant increase of beige differentiation marker and a decrease in extracellular matrix gene expression. Conversely, Egr1 overexpression in mesenchymal stem cells decreases beige adipocyte differentiation, while increasing extracellular matrix production. These results reveal a role for Egr1 in blocking energy expenditure via direct Ucp1 transcription repression and highlight Egr1 as a therapeutic target for counteracting obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/deficiência , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gordura Subcutânea/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Hibridização In Situ , Camundongos , Camundongos Knockout
12.
Nat Commun ; 8(1): 1218, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084951

RESUMO

Fibro-adipogenic progenitors (FAPs) are an interstitial cell population in adult skeletal muscle that support muscle regeneration. During development, interstitial muscle connective tissue (MCT) cells support proper muscle patterning, however the underlying molecular mechanisms are not well understood and it remains unclear whether adult FAPs and embryonic MCT cells share a common lineage. We show here that mouse embryonic limb MCT cells expressing the transcription factor Osr1, differentiate into fibrogenic and adipogenic cells in vivo and in vitro defining an embryonic FAP-like population. Genetic lineage tracing shows that developmental Osr1+ cells give rise to a subset of adult FAPs. Loss of Osr1 function leads to a reduction of myogenic progenitor proliferation and survival resulting in limb muscle patterning defects. Transcriptome and functional analyses reveal that Osr1+ cells provide a critical pro-myogenic niche via the production of MCT specific extracellular matrix components and secreted signaling factors.


Assuntos
Embrião de Mamíferos/citologia , Extremidades/embriologia , Desenvolvimento Muscular , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Animais , Padronização Corporal , Tecido Conjuntivo/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Camundongos , Mioblastos/metabolismo , Transdução de Sinais , Fator de Transcrição 4/metabolismo
13.
Cell Rep ; 18(11): 2752-2765, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297677

RESUMO

Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1Mmar) that induces the cGas/STING/TBK1/IRF-3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8+ T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4+ Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1Mmar confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis.


Assuntos
Vacina BCG/imunologia , Proteínas de Bactérias/metabolismo , Citosol/imunologia , Mycobacterium marinum/patogenicidade , Transdução de Sinais , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas Sintéticas/imunologia , Animais , Teste de Complementação Genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Imunização , Camundongos SCID , Fagossomos/metabolismo , Células Th1/imunologia , Tuberculose/microbiologia , Virulência
14.
Nat Microbiol ; 1: 15019, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27571976

RESUMO

Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host-pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.


Assuntos
Vias Biossintéticas , Evolução Molecular , Lipopolissacarídeos/biossíntese , Mycobacterium/genética , Mycobacterium/patogenicidade , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Animais , Modelos Animais de Doenças , Deleção de Genes , Teste de Complementação Genética , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Virulência
15.
Am J Hum Genet ; 98(3): 473-489, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26924529

RESUMO

Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.


Assuntos
Fraturas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Atrofia Muscular Espinal/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Artrogripose/diagnóstico , Artrogripose/genética , Proteínas de Transporte/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fraturas Ósseas/diagnóstico , Perfilação da Expressão Gênica , Homozigoto , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Dados de Sequência Molecular , Atrofia Muscular Espinal/diagnóstico , Mutação , Proteínas Nucleares/genética , Linhagem , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
BMC Genomics ; 17: 118, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26884275

RESUMO

BACKGROUND: In mycobacteria, conjugation differs from the canonical Hfr model, but is still poorly understood. Here, we quantified this evolutionary processe in a natural mycobacterial population, taking advantage of a large clinical strain collection of the emerging pathogen Mycobacterium abscessus (MAB). RESULTS: Multilocus sequence typing confirmed the existence of three M. abscessus subspecies, and unravelled extensive allelic exchange between them. Furthermore, an asymmetrical gene flow occurring between these main lineages was detected, resulting in highly admixed strains. Intriguingly, these mosaic strains were significantly associated with cystic fibrosis patients with lung infections or chronic colonization. Genome sequencing of those hybrid strains confirmed that half of their genomic content was remodelled in large genomic blocks, leading to original tri-modal 'patchwork' architecture. One of these hybrid strains acquired a locus conferring inducible macrolide resistance, and a large genomic insertion from a slowly growing pathogenic mycobacteria, suggesting an adaptive gene transfer. This atypical genomic architecture of the highly recombinogenic strains is consistent with the distributive conjugal transfer (DCT) observed in M. smegmatis. Intriguingly, no known DCT function was found in M. abscessus chromosome, however, a p-RAW-like genetic element was detected in one of the highly admixed strains. CONCLUSION: Taken together, our results strongly suggest that MAB evolution is sporadically punctuated by dramatic genome wide remodelling events. These findings might have far reaching epidemiological consequences for emerging mycobacterial pathogens survey in the context of increasing numbers of rapidly growing mycobacteria and M. tuberculosis co-infections.


Assuntos
Evolução Molecular , Genoma Bacteriano , Mosaicismo , Mycobacterium/genética , Técnicas de Tipagem Bacteriana , Hibridização Genômica Comparativa , Conjugação Genética , DNA Bacteriano/genética , Fluxo Gênico , Frequência do Gene , Transferência Genética Horizontal , Humanos , Modelos Genéticos , Tipagem de Sequências Multilocus , Filogenia , Análise de Sequência de DNA
17.
Exp Cell Res ; 336(2): 182-91, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26162853

RESUMO

Skeletal and heart muscle-specific variant of the alpha subunit of nascent polypeptide associated complex (skNAC) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports could demonstrate that skNAC binds to Smyd1 (SET and MYND domain containing protein 1). The facts that (a) SET domains have histone methyltransferase activity, and (b) MYND domains are known recruiters of histone deacetylases (HDACs), implicate the skNAC-Smyd1 complex in transcriptional control. To study potential target genes, we carried out cDNA microarray analysis on differentiating C2C12 myoblasts in which expression of the skNAC gene had been knocked down. We found and confirmed a series of targets, specifically genes encoding regulators of inflammation, cellular metabolism, and cell migration. Mechanistically, as shown by Western blot, ELISA, and ChIP analysis at selected promoter regions, transcriptional control by skNAC-Smyd1 appears to be exerted at least in part by affecting a series of histone modifications, specifically H3K4 di- and trimethylation and potentially also histone acetylation. Taken together, our data suggest that the skNAC-Smyd1 complex is involved in transcriptional regulation both via the control of histone methylation and histone (de)acetylation.


Assuntos
Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Proteínas Musculares/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Acetilação , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Inflamação/genética , Metilação , Camundongos , Músculo Esquelético/metabolismo , Mioblastos Cardíacos/citologia , Mioblastos Esqueléticos/citologia , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno , Succinato Desidrogenase/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/biossíntese
18.
Eur Urol ; 66(4): 677-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24674149

RESUMO

BACKGROUND: Whether the commonly used bacillus Calmette-Guérin (BCG) strains Connaught and Tice confer different treatment responses in non-muscle-invasive bladder cancer (NMIBC) is unknown. OBJECTIVES: To compare clinical efficacy, immunogenicity, and genetics of BCG Connaught and Tice. DESIGN, SETTING, AND PARTICIPANTS: A prospective randomized single-institution trial with treatment of 142 high-risk NMIBC patients with BCG Connaught or Tice. INTERVENTION: Patients were randomized to receive six instillations of BCG Connaught or Tice. For experimental studies, BCG strains were compared in C57Bl/6 mice. Bladders and lymphoid tissues were analyzed by cytometry and the latter cultivated to detect live BCG. BCG genomic DNA was sequenced and compared with reference genomes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Recurrence-free survival was the primary end point of the clinical study. The Kaplan-Meier estimator was used for estimating survival and time-to-event end points. Nonparametric tests served for the analysis of the in vivo results. RESULTS AND LIMITATIONS: Treatment with BCG Connaught conferred significantly greater 5-yr recurrence-free survival compared with treatment with BCG Tice (p=0.0108). Comparable numbers of patients experienced BCG therapy-related side effects in each treatment group (p=0.09). In mice, BCG Connaught induced stronger T-helper cell 1-biased responses, greater priming of BCG-specific CD8(+) T cells, and more robust T-cell recruitment to the bladder than BCG Tice. Genome sequencing of the BCG strains revealed candidate genes potentially involved in the differential clinical responses. CONCLUSIONS: BCG strain may have an impact on treatment outcome in NMIBC immunotherapy. PATIENT SUMMARY: We compared the efficacy of two commonly used bacillus Calmette-Guérin (BCG) strains for the treatment of NMIBC and found that treatment with BCG Connaught prevented recurrences more efficiently than BCG Tice. Comparison of the immunogenicity of the two strains in mice indicated superior immunogenicity of BCG Connaught. We also identified genetic differences that may explain the differential efficacy of the Connaught and Tice BCG strains. TRIAL REGISTRATION: NCT00003779.


Assuntos
Vacina BCG/administração & dosagem , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/mortalidade , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/mortalidade , Administração Intravesical , Idoso , Idoso de 80 Anos ou mais , Animais , Vacina BCG/classificação , Carcinoma de Células de Transição/patologia , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos , Medição de Risco , Estatísticas não Paramétricas , Análise de Sobrevida , Neoplasias da Bexiga Urinária/patologia
19.
OMICS ; 18(3): 184-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24512253

RESUMO

COV2HTML is an interactive web interface, which is addressed to biologists, and allows performing both coverage visualization and analysis of NGS alignments performed on prokaryotic organisms (bacteria and phages). It combines two processes: a tool that converts the huge NGS mapping or coverage files into light specific coverage files containing information on genetic elements; and a visualization interface allowing a real-time analysis of data with optional integration of statistical results. To demonstrate the scope of COV2HTML, the program was tested with data from two published studies. The first data were from RNA-seq analysis of Campylobacter jejuni, based on comparison of two conditions with two replicates. We were able to recover 26 out of 27 genes highlighted in the publication using COV2HTML. The second data comprised of stranded TSS and RNA-seq data sets on the Archaea Sulfolobus solfataricus. COV2HTML was able to highlight most of the TSSs from the article and allows biologists to visualize both TSS and RNA-seq on the same screen. The strength of the COV2HTML interface is making possible NGS data analysis without software installation, login, or a long training period. A web version is accessible at https://mmonot.eu/COV2HTML/ . This website is free and open to users without any login requirement.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Genômica/métodos , Internet , Software , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Navegador
20.
Mol Microbiol ; 90(3): 612-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23998761

RESUMO

Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.


Assuntos
Genes Bacterianos , Lipídeos/biossíntese , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium/genética , Peptídeo Sintases/genética , Proteínas de Bactérias/genética , Sequência de Bases , Perfilação da Expressão Gênica , Variação Genética , Genoma Bacteriano , Humanos , Mutação INDEL , Dados de Sequência Molecular , Família Multigênica , Mycobacterium/classificação , Mycobacterium/patogenicidade , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...