Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Toxicol Pharmacol ; 108: 104433, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583790

RESUMO

We investigated possible associations between the internal concentrations of POPs and correlations between blood and tumor tissue concentrations in patients who underwent surgery for breast cancer and breast reduction as controls. Genetic variations in CYP1A1, GSTP1, GSTM1, and GSTT1 and hOGG1 were evaluated to determine whether they represent risk factors for breast cancer. Certain POPs have been found to be associated with breast cancer development. GST-P1 polymorphism represented a significant risk for breast cancer with unadjusted OR. However, the GSTT1 null polymorphism represented a significant risk for breast cancer when OR adjusted for age and smoking status. CYP1A1 polymorphism was a significant risk factor for breast cancer, regardless of whether the OR was adjusted. These results suggest that exposure to certain POPs, GSTT1 and CYP1A1 polymorphisms, age, and smoking status are risk factors for breast cancer. In addition, the blood concentrations of some POPs represent surrogates for breast tissue concentrations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37114786

RESUMO

AIM: To provide in vitro data on toxicity mechanisms of clozapine, diclofenac and nifedipine. BACKGROUND: CHO-K1 cells were used as in vitro model to explore mechanisms of cytotoxicity of the test drugs. OBJECTIVE: Cytotoxic mechanisms of clozapine (CLZ), diclofenac (DIC) and nifedipine (NIF) were studied in CHO-K1 cells in vitro. All three drugs induce adverse reactions in some patients with partially unknown mechanisms. METHOD: Following the determination of time- and dose-dependency of cytotoxicity by the MTT test, cytoplasmic membrane integrity was explored by the LDH leakage test. Both end-points were further examined in the presence of soft and hard nucleophilic agents, glutathione (GSH) and potassium cyanide (KCN), respectively, and either individual or general cytochrome P450 (CYP) inhibitors, whether CYP-catalysed formation of electrophilic metabolites play a role in the observed cytotoxicity and membrane damage. The generation of reactive metabolites during the incubations was also explored. Formation of malondialdehyde (MDA) and oxidation of dihydrofluorescein (DCFH) were monitored whether peroxidative membrane damage and oxidative stress take place in cytotoxicity. Incubations were also conducted in the presence of chelating agents of EDTA or DTPA to explore any possible role of metals in cytotoxicity by facilitating electron transfer in redox reactions. Finally, mitochondrial membrane oxidative degradation and permeability transition pore (mPTP) induction by the drugs were tested as markers of mitochondrial damage. RESULTS: The presence of an individual or combined nucleophilic agents significantly diminished CLZ- and NIF-induced cytotoxicities, while the presence of both agents paradoxically increased DIC-induced cytotoxicity by a factor of three with the reason remaining unknown. The presence of GSH significantly increased DIC-induced membrane damage too. Prevention of membrane damage by the hard nucleophile KCN suggests the generation of a hard electrophile upon DIC and GSH interaction. The presence of CYP2C9 inhibitor sulfaphenazol significantly diminished DIC-induced cytotoxicity, probably by preventing the formation of 4-hydroxylated metabolite of DIC, which further converts to an electrophilic reactive intermediate. Among the chelating agents, EDTA caused a marginal decrease in CLZ-induced cytotoxicity, while DIC-induced cytotoxicity was amplified by a factor of five. Both reactive and stable metabolites of CLZ could be detected in the incubation medium of CLZ with CHO-K1 cells, which are known to have low metabolic capacity. All three drugs caused a significant increase in cytoplasmic oxidative stress by means of DCFH oxidation, which was confirmed by increased MDA from cytoplasmic as well as mitochondrial membranes. The addition of GSH paradoxically and significantly increased DIC-induced MDA formation, in parallel with the increase in membrane damage when DIC and GSH combined. CONCLUSION: Our results suggested that the soft electrophilic nitrenium ion of CLZ is not responsible for the observed in vitro toxicities, and this may originate from a relatively low amount of the metabolite due to the low metabolic capacity of CHO-K1. A hard electrophilic intermediate may contribute to cellular membrane damage incubated with DIC, while a soft electrophilic intermediate seems to exacerbate cell death by a mechanism other than membrane damage. A significant decrease in cytotoxicity of NIF by GSH and KCN suggested that both soft and hard electrophiles contribute to NIF-induced cytotoxicity. All three drugs induced peroxidative cytoplasmic membrane damage, while only DIC and NIF induced peroxidative mitochondrial membrane damage, which suggested mitochondrial processes may contribute to adverse effects of these drugs in vivo.

3.
Toxicol Lett ; 363: 36-44, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595037

RESUMO

Mitochondria appeared to be a major target for paracetamol (PAR)-induced hepatotoxicity. Studies suggested that microsomal CYPs catalyse bioactivation of PAR to N-acetyl-p-benzoquinone imine (NAPQI), which alkylates mitochondrial proteins, and causes transmission of death signal from mitochondria to nucleus. We hypothesised that local formation of NAPQI within mitochondria seems more likely compared to the translocation of NAPQI. We therefore tested whether the formation of NAPQI may be catalysed by mitochondrial CYPs. Cellular fractions were isolated from human liver and kidney to compare the metabolic capacities. Liver and kidney mitochondria are capable to generate NAPQI. Mitochondrial CYP2E1 and CYP3A4 activities were comparable to the microsomal counterparts in both organs. Previously reported higher kidney microsomal CYP2E1 activity in men compared women were observed in mitochondrial CYP2E1 as well in the present study. On the other hand, no correlation between kidney CYP2E1 activity and quantity of NAPQI formation, as well as no induction on mitochondrial permeability transition pore (mPTP) opening by PAR in kidney mitochondria strongly suggested a different toxicity mechanism in this organ.


Assuntos
Acetaminofen , Citocromo P-450 CYP2E1 , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Benzoquinonas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Iminas/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Mitocôndrias/metabolismo
5.
Curr Drug Metab ; 22(8): 657-669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34182906

RESUMO

In vivo biotransformation of exposed chemicals is one of the major factors that determine the concentration and the duration of a substance at the systemic site of effect. Given that toxicity is expressed as a function of two factors, namely dose and time, the type and intensity of the toxicity are directly dependent on the chemical transformation of the exposed parent substance. This dependency involves two different situations. The amount of the chemical reaching the target will be decreased with the extent of metabolism if the parent chemical is toxic, and the opposite is true if the metabolite(s) is toxic instead. To date, the liver microsomal fraction in mammals has been justifiably considered as the center of biotransformation reactions because the liver and microsomes (i.e., endoplasmic reticulum component of the cell) possess the most abundant types and quantities of xenobiotic-metabolizing enzymes, especially the cytochrome P450 supergene enzyme family. These enzymes are common in all kingdoms of life, which strongly suggests that the origin of life is common. It is already known that various drugs enter mitochondria by different mechanisms, and this translocation is believed to be responsible for mitochondrial effects that are part of the therapeutic actions of various drugs such as lipid-lowering statins or antidiabetogenic thiazolidindiones. However, the discovery of mitochondrial forms of the xenobiotic-metabolizing enzymes provoked discussions about whether mitochondria metabolize drugs and other chemicals to some extent. This possibility may particularly be important as mitochondria have various critical cellular structures and functions. In the case of in situ generated metabolite(s), when there are adverse interactions with either these structures or functions, various toxic outcomes may appear. In this review, we compiled studies in the literature regarding biotransformation of drugs and other chemicals catalyzed by mitochondria where it is both an initiator and target of toxicity.


Assuntos
Mitocôndrias/metabolismo , Preparações Farmacêuticas/metabolismo , Xenobióticos/metabolismo , Animais , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos
6.
Toxicology ; 447: 152628, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166605

RESUMO

The mechanism of clozapine-associated cardiotoxicity has not been elucidated. The formation of a reactive nitrenium ion from the drug has been suggested as the cause, however, the reason why the heart is a target remains unknown. The heart is one of the most perfused organs; therefore, it contains a large number of mitochondria per cell; these organelles are responsible for both oxygen metabolism and energy production due to high energy expenditure. Given that mitochondria play critical roles in cellular homeostasis and maintenance, this study tested the hypothesis that cardiac mitochondria are both a target and initiator of clozapine-induced cardiotoxicity through activating the drug. We investigated whether murine heart receives a relatively high amount of systemically administered drug (20 mg/kg, i.p., Wistar albino rats) and whether cardiac mice (Swiss albino) and rat (Wistar albino) mitochondria locally activate clozapine (100 µM) to a reactive metabolite. We observed a relatively large distribution of clozapine to heart tissue as well as the formation of reactive metabolites by cardiac mitochondria in situ. Mitochondrial cytochrome P450 enzymes (CYP) in cardiac tissue responsible for biotransformation of clozapine were also characterized. CYP3A4 has been found to be the major enzyme catalyzes CLZ bioactivation, while CYP1A largely and CYP3A4 partially catalyzes the formation of stable metabolites of CLZ. At 100 µM concentration, clozapine caused a significant decline in mitochondrial oxygen consumption rate in vitro as much as positive control (antimycin A), while it did not induce mitochondrial permeability transition pore opening. These data provide an explanation as to why the heart is a target for clozapine adverse effects.


Assuntos
Cardiotoxicidade/metabolismo , Clozapina/metabolismo , Clozapina/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Animais , Antipsicóticos/metabolismo , Antipsicóticos/toxicidade , Clozapina/química , Masculino , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Ratos , Ratos Wistar
7.
Toxicol Appl Pharmacol ; 409: 115317, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157119

RESUMO

Acetaminophen (APAP) hepatotoxicity is the most common cause of acute liver failure in the United States, and while a significant percentage of APAP overdose patients develop kidney injury, molecular mechanisms involved in APAP-induced nephrotoxicity are relatively unknown. We have shown that 4-methylpyrazole (4MP, Fomepizole) protects against APAP-induced liver injury by inhibiting reactive metabolite formation through Cyp2E1, and analysis of data from APAP overdose patients indicated that kidney dysfunction strongly correlated with severe liver injury. Since Cyp2E1 is also expressed in the kidney, this study explored protection by 4MP against APAP-induced nephrotoxicity. Male C57BL/6 J mice were treated with either 300 or 600 mg/kg APAP with or without 4MP for 2, 6 or 24 h, followed by measurement of APAP metabolism and tissue injury. Interestingly, levels of APAP and its non-oxidative metabolites were significantly higher in kidneys when compared to the liver. APAP-protein adducts were present in both tissues within 2 h, but were absent in kidney mitochondria, unlike in the liver. While GSH depletion was seen in both tissues, activation of c-jun N-terminal kinase and its translocation to the mitochondria, which is a critical feature of APAP-induced liver injury, was not detected in the kidney. Treatment with 4MP attenuated APAP oxidative metabolite generation, GSH depletion as well as kidney injury indicating its potential use in protection against APAP-induced nephrotoxicity. In conclusion, since reactive metabolite formation seems to be common in both liver and kidney, 4MP mediated inhibition of Cyp2E1 protects against APAP-induced nephrotoxicity. However, downstream mechanisms of APAP-induced nephrotoxicity seem distinct from the liver.


Assuntos
Acetaminofen/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Fomepizol/uso terapêutico , Substâncias Protetoras/uso terapêutico , Injúria Renal Aguda/metabolismo , Adolescente , Adulto , Idoso , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Feminino , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Substâncias Protetoras/farmacologia , Adulto Jovem
8.
Environ Toxicol Pharmacol ; 61: 8-17, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29803978

RESUMO

Paracetamol (PAR) overdose is associated with massive hepatic injury; it may induce kidney toxicity as well. It is essential to measure organ-specific activities of related CYPs for evaluating the overdose cases. Available HPLC-based methods require high amounts of tissue samples. In order to develop liquid chromatography mass spectrometry (LC-MS)-based methods to process small amounts of human tissues, liver and kidney samples were obtained. Individual microsomes were prepared and incubated with PAR (for quantifying bioactivation), with nifedipine (for measuring CYP3A4 activity) and with p-nitrophenol (for measuring CYP2E1 activity). The small amount of tissue microsomes was sufficient to measure both the formation of NAPQI and the activities of CYP enzymes. Although the sample size in group was relatively low, both NAPQI formation and activity of CYP2E1 were significantly higher in males compared to females in kidney. Considerable variations in the metabolic capacity of individuals were observed for both organs.


Assuntos
Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Rim/metabolismo , Fígado/metabolismo , Ativação Metabólica , Benzoquinonas/metabolismo , Feminino , Humanos , Iminas/metabolismo , Masculino , Microssomos/metabolismo
9.
Environ Sci Pollut Res Int ; 24(5): 4274-4283, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26971518

RESUMO

The Büyük Menderes River (BMR) is one of the largest rivers in Turkey. This river irrigates efficient farmlands and includes tributaries of other rivers and streams and many populated towns within its limits in the Ege region. Both the estuary and Isikli Lake serve as a sanctuary for various waterbirds. Therefore, the BMR plays a critical role both for the inhabitants and for the ecosystem organisms in its environs. In the present study, we analyzed levels of metals including iron, barium, zinc, vanadium, cobalt, chromium, cadmium, copper, nickel, aluminum, arsenic, manganese, antimony, silver, selenium, boron, mercury, titanium, and lead in river water, sediment, fish (Cyprinus carpio; common carp), and in various waterbird (Fulica atra, Euroasian coot; Larus michahellis, yellow-legged gull; Ardea cinerea, grey heron; Larus melanocephalus, Mediterranean gull; and Pelecanus crispus, pelican) samples. Analyses were performed using an inductively coupled plasma-mass spectrometry (ICP-MS) instrument after sample preparation. Comparing metal concentrations among different sample types, it was found that barium, aluminum, and zinc are the major metals in river water, and zinc in common carp muscle, while iron, aluminum, and manganese are the major metals in sediments. Iron, zinc, copper, and aluminum were the highest in waterbird muscle tissue. Iron and barium were found to be the major metals in eggshell, while iron and zinc are the major metals in egg samples. A simple "worst-case scenario" model of risk assessment revealed that some of the analyzed metals may pose a risk for human health through consuming fish.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Alumínio/análise , Animais , Arsênio/análise , Carpas , Turquia , Vanádio/análise
10.
Environ Sci Pollut Res Int ; 24(5): 4241-4251, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26081778

RESUMO

Concentrations of persistent organic pollutants (POPs) were quantified in river water and sediment, as well as in the liver and muscle tissues of Cyprinus carpio that were sampled four times in a year at three stations in the Büyük Menderes River (BMR). Potential biomarkers of possible cellular molecular damage, namely lipid peroxidation (LPO) degradation products, protein carbonyls (PCO) and DNA repair product 8-hydroxy-2'-deoxyguanosine (8-OHdG), were analysed. All the targeted pollutants were measurable both in biotic and abiotic samples. Interestingly, the results suggested that there was recent organochlorine pesticide (OCP) input into the river water in the first two sampling periods in all stations in contrast to prohibition, while input of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) was not detected. Liver POP concentrations were higher than in muscle, as expected, and were found to decrease from the first to the fourth sampling period in all stations, except PBDEs. Levels of LPO degradation products in the liver and in muscle tissues decreased from the first to the fourth sampling period. This suggests that these markers reflect the lipid damage in respective tissues due to the tissue burden of targeted POPs. Protein carbonyls were the highest in the first sampling period, followed by a dramatic decrease in the second, and then a gradual increase towards the fourth sampling period in all stations. 8-OHdG levels were lower in Sarayköy station in the first sampling period. Among the measured biomarkers, only several LPO degradation products were significantly correlated with OCPs and PCBs in liver tissue.


Assuntos
Carpas , Rios/química , Poluentes Químicos da Água/análise , 8-Hidroxi-2'-Desoxiguanosina , Animais , Desoxiguanosina/análogos & derivados , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Praguicidas/análise
12.
Free Radic Biol Med ; 95: 169-79, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016072

RESUMO

ELISA is commonly used for the detection of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of whole body oxidative stress. However, the method has been criticized for high inter-laboratory variability and poor agreement with chromatographic techniques. We performed an inter-laboratory comparison of 8-oxodG assessed in 30 urine samples and a urine spiked with four different concentrations of 8-oxodG by ELISA using standardized experimental conditions, including: sample pre-treatment with solid-phase extraction (SPE), performing analysis using a commercial kit from a single manufacturer and strict temperature control during the assay. We further compared the ELISA results with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and performed tentative identification of compounds that may contribute to the discrepancy between both methods. For all but one participating laboratory (Data 1) we observed consistent ELISA results lying mostly within 1SD of the mean 8-oxodG concentration. Mean 8-oxodG levels assessed by ELISA correlated with the data obtained by HPLC-MS/MS (R=0.679, p<0.001). The correlation improved when Data 1 were excluded from the analysis (R=0.749, p<0.001). We identified three outlying urine samples; one with an ELISA 8-oxodG concentration lower, and two with 8-oxodG levels higher, than those measured by HPLC-MS/MS. Omitting these samples further improved inter-methodology agreement (R=0.869, p<0.001). In the outliers with high 8-oxodG estimates various aromatic and heterocyclic compounds were tentatively identified using gas chromatography-mass spectrometry (GC-MS). Application of authentic standards revealed the presence of saccharides, including d-glucose and d-galactose as putative interfering substances. In summary, assay standardization improved ELISA inter-laboratory agreement, although some variability is still observed. There are still compounds contributing to overestimation of 8-oxodG by ELISA, but only in some urine samples. Thus, despite significant improvement, ELISA still should not be considered a robust alternative to chromatographic techniques.


Assuntos
Biomarcadores/urina , Desoxiguanosina/análogos & derivados , Ensaio de Imunoadsorção Enzimática/métodos , Estresse Oxidativo/genética , 8-Hidroxi-2'-Desoxiguanosina , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/urina , Humanos , Extração em Fase Sólida , Espectrometria de Massas em Tandem
13.
Curr Med Chem ; 22(4): 408-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25174932

RESUMO

Biotransformation is one of the key elements of chemically induced toxicity. Although organisms have an intrinsic tendency to diminish the harm posed by chemical exposure with or without structural modification and excretion of the agents (detoxification), this is not always the case; toxification may also occur. The liver has evolved to be the center of biotransformation from the anatomical, physiological and biochemical points of view; it is located alongside the stomach and intestine, it receives more than 25% of the cardiac output and it contains, in general, the richest quantity but also variety of drug metabolizing enzymes. That is why many orally taken drug-induced toxic effects are seen in the liver. Nevertheless, non-hepatic tissues in the organism are also subjected to toxic insult. Although several instances have suggested transport of liver-bioactivated reactive metabolites to the target tissue is responsible, such as monocrotaline-associated lung toxicity, tetraethyl lead- and n-hexane-associated nervous system toxicity and 2-methoxyethanol-associated testis toxicity, etc. [1], the vast majority of data show local bioactivation in the target tissue is responsible for the extrahepatic toxic outcome. The impact of extrahepatic bioactivation and toxicity of drugs can also be seen in cases of drug attrition due to unacceptable toxicity; adverse cardiovascular effects were the foremost reason for drug withdrawals between 1993 and 2006 [2]. On the other hand, the parent drug and/or its stable metabolite( s) may also cause adverse effects such as inhibition of transporters, occlusion of bile secretion (cholestasis) and accumulation in organelles such as mitochondria, causing steatosis in liver and possibly in other organs. However, this review attempts to summarize only extrahepatic bioactivation of drugs/chemicals and their effects at the cellular and tissue level. Specifically, it focuses on the two most perfused organs, lung and heart tissue, as well as thyroid, blood, brain, and skin. Clozapine, a still-in-use drug with severe off-target toxicities (agranulocytosis and cardiovascular toxicity), is investigated in depth and various drugs are reviewed with a special emphasize on the other mentioned organs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas/metabolismo , Ativação Metabólica , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Coração/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Miocárdio/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo
14.
Drug Chem Toxicol ; 38(4): 375-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25346999

RESUMO

We explored the association between the activities of antioxidant enzymes and their metallic cofactors in rats treated with cisplatin. The antioxidant effects of aminoguanidine, and a combination of vitamins E and C were investigated. Plasma platin was significantly lower than liver and kidney. Cisplatin treatment caused significant increase in plasma Se-glutathione peroxidase activity. Activities of Se-glutathione peroxidase, glutathione S-transferase, catalase and Cu,Zn-superoxide dismutase have been found to be significantly decreased in liver and kidney compared to controls. Zn levels in these organs were diminished upon cisplatin treatment, while levels of Cu were unaffected. Interestingly, levels of iron, the cofactor of catalase, were found to be significantly increased in liver and kidney. Intervention with aminoguanidine or vitamins was generally prevented cisplatin-caused changes in the activity of enzymes and in the tissue levels of cofactor metals. These observations suggest that relation between activities of enzymes and levels of cofactor metals is multifactorial.


Assuntos
Antioxidantes/metabolismo , Cisplatino/toxicidade , Coenzimas/metabolismo , Enzimas/metabolismo , Animais , Antineoplásicos/toxicidade , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Catalase/metabolismo , Coenzimas/química , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Guanidinas/administração & dosagem , Guanidinas/farmacologia , Rim/metabolismo , Fígado/metabolismo , Masculino , Metais/química , Metais/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Vitamina E/administração & dosagem , Vitamina E/farmacologia
16.
Toxicol Lett ; 230(2): 198-207, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583044

RESUMO

The present study was designed to investigate the association between levels of organochlorine pesticides (OCPs) and liver enzyme responses in Cyprinus carpio. Fish were caught at three stations in the Büyük Menderes River (BMR): the origin, the Sarayköy station, and the estuary. Seventeen OCPs were quantified in liver tissue, as well as in river water by gas chromatography (GC)-electron capture detection, and structures were confirmed by negative chemical ionization-GC-mass spectrometry. The activities of CYP1A, GST, Se-GPx, CAT, and SODs were determined by spectrophotometry or fluorimetry. The mRNA levels of CYP1A, GST, and SOD1 were quantified by real-time RT-PCR. CYP1A and antioxidant enzyme activities were dramatically higher at the Sarayköy station, where OCP pollution is higher than the other two stations. Mn-SOD is responsible for the increase in total SOD activity in the Sarayköy samples. However, gene expression levels of certain enzymes were heavily suppressed. Our findings show that the transcriptional and functional responses of CYP1A and antioxidant enzymes are inversely correlated.


Assuntos
Hidrocarbonetos Clorados/toxicidade , Fígado/efeitos dos fármacos , Praguicidas/toxicidade , Superóxido Dismutase/genética , Animais , Carpas , Citocromo P-450 CYP1A1/genética , Glutationa Transferase/genética , Fígado/enzimologia , RNA Mensageiro/análise
17.
Toxicol Lett ; 230(2): 208-17, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24503014

RESUMO

Three main groups of persistent organic pollutants (POPs); namely organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) were quantified in water and sediment samples, as well as in various invasive and non-invasive samples from waterbirds in the Büyük Menderes River (BMR). Liver and muscle tissues, blood, and preen gland oil samples of yellow-legged gull (Larus michahellis) and Euroasian coot (Fulica atra) were collected both from the origin (Isikli Lake) and the estuary (Söke) of the river, blood and preen gland oil samples of grey heron (Ardea cinerea) and pelican (Pelecanus crispus) were collected from the estuary only. In addition, non-hatched eggs from several above species and Mediterranean gull (Larus melanocephalus), in either station were collected. In all samples, POP contamination was measured and the potential usefulness of those invasive and non-invasive sampling for biomonitoring was evaluated. Activities of antioxidant enzymes were measured as potential indicators of POP exposure and of changes in the cellular defence. Venous blood proved to be a promising biomonitor for the concentrations in liver and muscle, especially for PCBs. Activities of antioxidant enzymes were correlated with the liver concentrations of several OCP congeners. The measured egg DDE concentrations were below the established threshold concentrations for the risk of hatch and reproductive success.


Assuntos
Aves/metabolismo , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Animais , Fígado/química , Músculos/química , Superóxido Dismutase/metabolismo
18.
Antioxid Redox Signal ; 18(18): 2377-91, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23198723

RESUMO

AIMS: Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is a widely used biomarker of oxidative stress. However, variability between chromatographic and ELISA methods hampers interpretation of data, and this variability may increase should urine composition differ between individuals, leading to assay interference. Furthermore, optimal urine sampling conditions are not well defined. We performed inter-laboratory comparisons of 8-oxodG measurement between mass spectrometric-, electrochemical- and ELISA-based methods, using common within-technique calibrants to analyze 8-oxodG-spiked phosphate-buffered saline and urine samples. We also investigated human subject- and sample collection-related variables, as potential sources of variability. RESULTS: Chromatographic assays showed high agreement across urines from different subjects, whereas ELISAs showed far more inter-laboratory variation and generally overestimated levels, compared to the chromatographic assays. Excretion rates in timed 'spot' samples showed strong correlations with 24 h excretion (the 'gold' standard) of urinary 8-oxodG (rp 0.67-0.90), although the associations were weaker for 8-oxodG adjusted for creatinine or specific gravity (SG). The within-individual excretion of 8-oxodG varied only moderately between days (CV 17% for 24 h excretion and 20% for first void, creatinine-corrected samples). INNOVATION: This is the first comprehensive study of both human and methodological factors influencing 8-oxodG measurement, providing key information for future studies with this important biomarker. CONCLUSION: ELISA variability is greater than chromatographic assay variability, and cannot determine absolute levels of 8-oxodG. Use of standardized calibrants greatly improves intra-technique agreement and, for the chromatographic assays, importantly allows integration of results for pooled analyses. If 24 h samples are not feasible, creatinine- or SG-adjusted first morning samples are recommended.


Assuntos
Artefatos , Desoxiguanosina/análogos & derivados , Urinálise/normas , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Soluções Tampão , Desoxiguanosina/análise , Desoxiguanosina/urina , Feminino , Neoplasias de Cabeça e Pescoço/urina , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Reprodutibilidade dos Testes , Cloreto de Sódio , Soluções , Adulto Jovem
19.
Biomarkers ; 18(1): 73-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136842

RESUMO

OBJECTIVE: To investigate whether lipid and protein oxidation products are elevated and correlated with routine clinical markers of hepatic and renal function in patients anesthetized with halothane, isoflurane, or sevoflurane. METHODS: Urine and blood samples were collected from patient groups. Excretion of aldehydes, acetone, and o,o'-dityrosine was measured before and after anesthesia. Blood samples were analysed for clinical markers. RESULTS: Urinary concentrations of aldehydes, acetone, o,o'-dityrosine and glucose were significantly increased after anesthesia in halothane and sevoflurane groups earlier than clinical markers. Significant correlations were found in sevoflurane group. CONCLUSION: Lipid and protein oxidation contributes to subclinical sevoflurane nephrotoxicity. Oxidation products may serve as early biomarkers.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Biomarcadores/urina , Halotano/efeitos adversos , Isoflurano/efeitos adversos , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Lipídeos/urina , Éteres Metílicos/efeitos adversos , Proteinúria/etiologia , Acetona/urina , Aldeídos/urina , Feminino , Glicosúria/etiologia , Humanos , Masculino , Oxirredução , Sevoflurano , Tirosina/análogos & derivados , Tirosina/urina
20.
Curr Drug Metab ; 12(4): 383-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21395525

RESUMO

Despite several thousands of drugs are in use currently, research on new drug molecules is continuing. Because, there are diseases still without medication, successor/better drugs make the predecessor ones obsolete, and advancement in both life sciences and analytical technologies provide identification of previously unknown mechanisms of diseases, and discovery of novel drug targets. The two main criteria which a drug candidate should meet are high affinity for the target, and no or acceptable/tolerable toxicity in humans. Among these two, toxicity is the limiting one; developing a drug candidate with unacceptable toxicity has to be discontinued, even if it has an extremely high pharmacological activity. Drug would be withdrawn, if serious toxicity arises after marketing. Since drug development is a long (approximately 10 years), expensive, and infertile (one lead in 10.000 molecules) process, it is extremely important to detect the potential toxicity of drug candidate as early as possible. Today, it is believed that a great majority of toxic effects are caused by reactive intermediates generated by biotransformation of the parent drug. However, there are experimental difficulties in identifying such metabolite(s) in vivo. Their formation is affected by multi-factorial events; they can further be metabolized to structurally different products, and/or they may bind to a huge variety of biological sites or macromolecules. Hence, some reactive intermediates and their corresponding stable derivatives are generated in trace amounts, which make their determination more difficult. The ability of cytochrome P450s (CYP450) and other biotransformation enzymes to function in vitro offers a great flexibility to researchers, biotransformation of any compound can be simulated in a test tube, and metabolites/reactive intermediates are generated in an environment which has relatively much less background and less interfering multi-factorial events compared to in vivo. To simulate biotransformation, microsomal fraction is used most frequently from human and non-human sources. Purified or recombinant enzymes are used in determining the individual isoenzymes responsible for certain metabolites. Because of the chemical reactivity of intermediates, relevant, usually nucleophilic trapping agent(s) such as glutathione (GSH), N-acetylcysteine (NAC) and cyanide (CN-) are used to stabilize the metabolite. Trapped metabolites are subjected to spectrometric and/or nuclear magnetic resonance spectroscopic analyses for structural identification. Vertiginous advances especially in mass spectrometric technologies offer researchers new challenges in this area. This review is aimed at briefly summarizing the state of the art and compiling the highlighted studies in characterization of the reactive metabolites from drug molecules.


Assuntos
Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...