Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(19): 10115-10128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703121

RESUMO

This study investigates the utilization of the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a catalytic material for the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). PEDOT films doped with different counterions were electrodeposited on graphite foil. In particular, the mobile anion perchlorate and the polymeric ionomers polystyrenesulfonate, Nafion, and Aquivion were used. The electrocatalytic properties of PEDOT films were evaluated toward the TEMPO redox mediator in the absence and the presence of HMF as a substrate for oxidation reactions. The electrocatalytic HMF oxidation was confirmed to occur at PEDOT electrodes, and it was also found that the chemical nature of PEDOT counterions controls the electrocatalytic conversion of HMF by modulating the kinetics of the electrochemical generation of the oxoammonium cation TEMPO(+). Potentiostatic electrolysis experiments showed that both the reference graphite electrode and PEDOT substrates were able to convert HMF to FDCA with an 80% faradaic efficiency (FE) and a >90% yield (FDCA), but, compared to graphite, the complete conversion of HMF to FDCA required a ca. 30% shorter time when using PEDOT electrodes doped with perchlorate or Aquivion, thanks to their ability to sustain a higher current density in the initial phase of the electrolysis. In addition, while all PEDOT films were chemically stable under the electrochemical conditions herein described, only PEDOT films doped with Aquivion were also mechanically robust and stable against delamination. Thus, the new PEDOT/Aquivion composite may represent the best choice for the implementation of PEDOT-based electrodes in TEMPO-mediated electrocatalytic applications.

2.
ACS Omega ; 7(33): 29181-29194, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033653

RESUMO

PEDOT-based counter electrodes for dye-sensitized solar cells (DSSCs) are generally prepared by electrodeposition, which produces polymer films endowed with the best electrocatalytic properties. This translates in fast regeneration of the redox mediator, which allows the solar cell to sustain efficient photoconversion. The sustainable fabrication of DSSCs must consider the scaling up of the entire process, and when possible, it should avoid the use of large amounts of hazardous and/or inflammable chemicals, such as organic solvents for instance. This is why electrodeposition of PEDOT-based counter electrodes should preferably be carried out in aqueous media. In this study, PEDOT/Nafion was electrodeposited on FTO and comparatively evaluated as a catalytic material in DSSCs based on either cobalt or copper electrolytes. Our results show that the electrochemical response of PEDOT/Nafion toward Co(II/III-) or Cu(I/II)-based redox shuttles was comparable to that of PEDOT/ClO4 and significantly superior to that of PEDOT/PSS. In addition, when tested for adhesion, PEDOT/Nafion films were more stable for delamination if compared to PEDOT/ClO4, a feature that may prove beneficial in view of the long-term stability of solar devices.

3.
Appl Opt ; 60(31): H37-H44, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807197

RESUMO

The material emitted from a target surface during laser ablation generates a net thrust (propulsion) in the opposite direction. The momentum generation efficiency of this laser-driven propulsion is given by the mechanical coupling coefficient (Cm). In this work, we considered nanosecond UV laser ablation of the aluminum 6061 alloy to study the Cm behavior with different irradiating conditions. This is done by systematically changing fluence, uniform/nonuniform intensity, and incident angle of the laser beam. In particular, we found that when dealing with nonuniform laser intensity, characterizing Cm exclusively in terms of fluence is not fully satisfactory because the energy distribution over the irradiated area plays a key role in the way material is removed-interplay between vaporization and phase explosion-and thrust is generated.

4.
J Environ Manage ; 286: 112226, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677338

RESUMO

Green-synthesized materials and solar concentration technology for advanced oxidation processes (AOPs) offer important opportunities in water remediation by giving value to clean, renewable and potentially low-cost resources. Here, Zinc Oxide (ZnO) nanostructures (NSs) were prepared via a green synthesis method based on garlic bulbs (Allium Sativum) extract (ZnO-Green), resulting in crystalline (wurtzite) nanorods (NRs). ZnO nanoparticles (NPs) were also chemically prepared through a standard co-precipitation (ZnO-Chem) for comparative solar photocatalytic (PC) studies. The green-synthesized ZnO NRs exhibited a favorable photocatalytic activity (PCA) in colloidal suspension for the methylene blue (MB) dye degradation upon exposure to concentrated sunlight. Comparison with the chemically synthesized ZnO results in almost equal degradations of 94% in optimal loading condition. To explore the possibility to use immobilized photocatalyst in heterogeneous condition, green-synthesized ZnO NRs coatings were fabricated and compared with a 135 nm thick ZnO thin film produced by pulsed laser deposition (PLD) (ZnO-PLD). PCA on MB degradation (120 min experiments) resulted in degradations of 69% and 73%, respectively, proving the feasibility of the immobilized photocatalyst approach. Finally, an economic analysis of the process shows that the combination of green-synthesis and concentrated sunlight significantly reduces costs, paving the way for large-scale photocatalytic wastewater remediation.


Assuntos
Óxido de Zinco , Catálise , Azul de Metileno , Luz Solar , Águas Residuárias
5.
Micromachines (Basel) ; 11(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527055

RESUMO

Due to the large number of possible applications in quantum technology fields-especially regarding quantum sensing-of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), research on a cheap, scalable and effective NDs synthesis technique has acquired an increasing interest. Standard production methods, such as detonation and grinding, require multistep post-synthesis processes and do not allow precise control in the size and fluorescence intensity of NDs. For this reason, a different approach consisting of pulsed laser ablation of carbon precursors has recently been proposed. In this work, we demonstrate the synthesis of NV-fluorescent NDs through pulsed laser ablation of an N-doped graphite target. The obtained NDs are fully characterized in the morphological and optical properties, in particular with optically detected magnetic resonance spectroscopy to unequivocally prove the NV origin of the NDs photoluminescence. Moreover, to compare the different fluorescent NDs laser-ablation-based synthesis techniques recently developed, we report an analysis of the effect of the medium in which laser ablation of graphite is performed. Along with it, thermodynamic aspects of the physical processes occurring during laser irradiation are analyzed. Finally, we show that the use of properly N-doped graphite as a target for laser ablation can lead to precise control in the number of NV centers in the produced NDs.

6.
J Environ Manage ; 259: 110067, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932267

RESUMO

Research around hydrothermal carbonization (HTC) has seen a huge development in recent years, materializing in the first pilot and industrial plants. Even though HTC reactions are slightly exothermic, the overall process entails energy consumption to both reach operating conditions and tackle heat losses. To face this issue and to develop a zero-energy process, this work proposes an innovative solution: the coupling of an HTC reactor with a solar concentrator, designed to fully cover the HTC energy needs. A 300 ml stainless steel HTC reactor was constructed and positioned on the focus of a parabolic dish concentrator (PDC), consisting of one parabolic mirror of 0.8 m2. To maximize the light absorption, the illuminated side of the HTC reactor was coated with a thin layer of nanostructured copper oxide, realized via electron beam deposition. Then, the effectiveness of the hybrid solar-HTC solution was demonstrated by carrying out an experimental campaign on a residual agro-biomass (grape seeds), which was treated at 180, 220, and 250 °C for 2 h. The coating confers excellent absorbing performances to the system, exhibiting an absorptance of up to 95.6% (at 300 nm wavelength). Heating times, yields, composition, and energy properties of "solar hydrochars" resemble those of studies performed in traditional HTC systems. This research work proves the feasibility of the solar-HTC prototype apparatus and opens the way to the development of a zero-energy solar-HTC technology.


Assuntos
Carbono , Biomassa , Temperatura
7.
ACS Appl Mater Interfaces ; 11(51): 48002-48012, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31797662

RESUMO

Water oxidation represents the anodic reaction in most of the photoelectrosynthetic setups for artificial photosynthesis developed so far. The efficiency of the overall process strongly depends on the joint exploitation of good absorber domains and interfaces with minimized recombination pathways. To this end, we report on the effective coupling of thin-layer hematite with amorphous porous nickel-iron oxide catalysts prepared via pulsed laser deposition. The rational design of such composite photoelectrodes leads to the formation of a functional adaptive junction, with enhanced photoanodic properties with respect to bare hematite. Electrochemical impedance spectroscopy has contributed to shed light on the mechanisms of photocurrent generation, confirming the reduction of recombination pathways as the main contributor to the improved performances of the functionalized photoelectrodes. Our results highlight the importance of the amorphous catalysts' morphology, as dense and electrolyte impermeable layers hinder the pivotal charge compensation processes at the interface. The direct comparison with all-iron and all-nickel catalytic counterparts further confirms that control over the kinetics of both hole transfer and charge recombination, enabled by the adaptive junction, is key for the optimal operation of this kind of semiconductor/catalyst interfaces.

8.
Photochem Photobiol Sci ; 18(9): 2150-2163, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931455

RESUMO

WO3/BiVO4 films obtained by electrochemical deposition of BiVO4 over mesoporous WO3 were applied to the photoelectrochemical degradation of selected emerging contaminants (ketoprofen and levofloxacine) in aqueous solutions. The WO3/BiVO4 films in this work are characterized by a mesoporous morphology with a maximum photoconversion efficiency >40% extending beyond 500 nm in Na2SO4 electrolytes. Oxygen was found to be the dominant water oxidation product (ca. 90% faradaic yield) and no evidence for the photogeneration of OH radicals was obtained. Nevertheless, both 10 ppm levofloxacine and ketoprofen could be degraded at WO3/BiVO4 junctions upon a few hours of illumination under visible light. However, while levofloxacine degradation intermediates were progressively consumed by further oxidation at the WO3/BiVO4 interface, ketoprofen oxidation byproducts, being stable aromatic species, were found to be persistent in aqueous solution even after 15 hours of solar simulated illumination. This indicates that, due to the lower oxidizing power of photogenerated holes in BiVO4 and a different water oxidation mechanism, the employment of WO3/BiVO4 in photoelectrochemical environmental remediation processes is much less universal than that possible with wider band gap semiconductors such as TiO2 and WO3.

9.
J Environ Manage ; 203(Pt 1): 364-374, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810208

RESUMO

Recombination of photogenerated charges is the main factor affecting the photocatalytic activity of TiO2. Here, we report a combined strategy of suppressing both the bulk as well as the surface recombination processes by doping TiO2 with tungsten and forming a nanocomposite with reduced graphene oxide (rGO), respectively. Sol-gel method was used to dope and optimize the concentration of W in TiO2 powder. UV-Vis, XPS, PL and time resolved PL spectra along with DFT calculations indicate that W6+ in TiO2 lattice creates an impurity level just below the conduction band of TiO2 to act as a trapping site of electrons, which causes to improve the lifetime of the photo-generated charges. Maximum reduction in the PL intensity and the improvement in charge carrier lifetime was observed for TiO2 doped with 1 at.% W (1W-TiO2), which also displayed the highest photo-activity for the degradation of p-nitro phenol pollutant in water. Tuning of rGO/TiO2 ratio (weight) disclosed that the highest activity can be achieved with the composite formed by taking equal amounts of TiO2 and rGO (1:1), in which the strong interaction between TiO2 and rGO causes an effective charge transfer via bonds formed near the interface as indicated by XPS. Both these optimized concentrations were utilized to form the composite rGO/1W-TiO2, which showed the highest activity in photo-degradation of p-nitro phenol (87%) as compared to rGO/TiO2 (42%), 1W-TiO2 (62%) and pure TiO2 (29%) in 180 min. XPS and PL results revealed that in the present nanocomposite, tungsten species traps the excited electron to reduce the interband recombination in the bulk, while the interaction between TiO2 and rGO creates a channel for fast transfer of excited electrons towards the latter before being recombined on the surface defect sites.


Assuntos
Grafite , Titânio , Tungstênio , Catálise , Elétrons , Óxidos , Fenol
10.
ACS Appl Mater Interfaces ; 8(31): 20003-11, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27447454

RESUMO

Integrated absorber/electrocatalyst schemes are increasingly adopted in the design of photoelectrodes for photoelectrochemical cells because they can take advantage of separately optimized components. Such schemes also lead to the emergence of novel challenges, among which parasitic light absorption and the nature of the absorber/catalyst junction features prominently. By taking advantage of the versatility of pulsed-laser deposition technique, we fabricated a porous iron(III) oxide nanoparticle-assembled coating that is both transparent to visible light and active as an electrocatalyst for water oxidation. Compared to a compact morphology, the porous catalyst used to functionalize crystalline hematite photoanodes exhibits a superior photoresponse, resulting in a drastic lowering of the photocurrent overpotential (about 200 mV) and a concomitant 5-fold increase in photocurrents at 1.23 V versus reversible hydrogen electrode. Photoelectrochemical impedance spectroscopy indicated a large increase in trapped surface hole capacitance coupled with a decreased charge transfer resistance, consistent with the possible formation of an adaptive junction between the absorber and the porous nanostructured catalyst. The observed effect is among the most prominent reported for the coupling of an electrocatalyst with a thin layer absorber.

11.
Phys Chem Chem Phys ; 17(44): 29661-70, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26477966

RESUMO

Different approaches have been explored to increase the water oxidation activity of nanostructured hematite (α-Fe2O3) photoanodes, including doping with various elements, surface functionalization with both oxygen evolving catalysts (OEC) and functional overlayers and, more recently, the introduction of ultrathin oxide underlayers as tunneling back contacts. Inspired by this latter strategy, we present here a photoanode design with a nanometric spin-coated iron oxide underlayer coupled with a mesoporous hematite film deposited by electrophoresis. The electrodes equipped with the thin underlayer exhibit a four-fold improvement in photoactivity over the simple hematite porous film, reaching a stable photocurrent density of ca. 1 mA cm(-2) at 0.65 V versus the saturated calomel electrode (SCE) at pH 13.3 (NaOH 0.1 M) under air mass (AM) 1.5G illumination. A further improvement to 1.5 mA cm(-2) is observed after decoration of the hematite surface with a Fe(iii)-OEC. These results demonstrate that by combining different iron oxide morphologies, it is possible to improve the selectivity of the interfaces towards both electron collection at the back contact and hole transfer to the electrolyte, obtaining an efficient all-iron based photoelectrode entirely realized with simple wet solution scalable procedures.


Assuntos
Eletrodos , Compostos Férricos/química , Fotoquímica , Elétrons , Microscopia Eletrônica de Varredura , Porosidade
12.
ACS Appl Mater Interfaces ; 6(9): 6186-90, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24742340

RESUMO

Amorphous iron oxide nanoparticles were synthesized by pulsed-laser deposition (PLD) for functionalization of indium-tin oxide surfaces, resulting in electrodes capable of efficient catalysis in water oxidation. These electrodes, based on earth-abundant and nonhazardous iron metal, are able to sustain high current densities (up to 20 mA/cm2) at reasonably low applied potential (1.64 V at pH 11.8 vs reversible hydrogen electrode) for more than 1 h when employed as anodes for electrochemical water oxidation. The good catalytic performance proves the validity of PLD as a method to prepare nanostructured solid-state materials for catalysis, enabling control over critical properties such as surface coverage and morphology.

13.
Photochem Photobiol Sci ; 12(10): 1749-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23900713

RESUMO

Three porphyrin-cobaloxime dyads, suitable for application in photoinduced hydrogen generation with sacrificial donors, are characterized by ultrafast spectroscopy in order to clarify the primary photochemical events.


Assuntos
Hidrogênio/química , Compostos Organometálicos/química , Processos Fotoquímicos , Porfirinas/química , Complexos de Coordenação/química , Cristalografia por Raios X , Conformação Molecular , Espectrometria de Fluorescência
14.
Inorg Chem ; 51(13): 7324-31, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22686248

RESUMO

The tetraruthenium polyoxometalate [Ru(4)(µ-O)(4)(µ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2)](10-) (1) behaves as a very efficient water oxidation catalyst in photocatalytic cycles using Ru(bpy)(3)(2+) as sensitizer and persulfate as sacrificial oxidant. Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)(3)(2+) sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. Complementary charge interactions in aqueous solution leads to an efficient static quenching of the Ru(bpy)(3)(2+) excited state. The quenching takes place in ion-paired species with an average 1:Ru(bpy)(3)(2+) stoichiometry of 1:4. It occurs by very fast (ca. 2 ps) electron transfer from the excited photosensitizer to the catalyst followed by fast (15-150 ps) charge recombination (reversible oxidative quenching mechanism). This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. The Ru(bpy)(3)(3+) generated by photoreaction of the excited sensitizer with the sacrificial oxidant undergoes primary bimolecular hole scavenging by 1 at a remarkably high rate (3.6 ± 0.1 × 10(9) M(-1) s(-1)), emphasizing the kinetic advantages of this molecular species over, e.g., colloidal oxide particles as water oxidation catalysts. The kinetics of the subsequent steps and final oxygen evolution process involved in the full photocatalytic cycle are not known in detail. An indirect indication that all these processes are relatively fast, however, is provided by the flash photolysis experiments, where a single molecule of 1 is shown to undergo, in 40 ms, ca. 45 turnovers in Ru(bpy)(3)(3+) reduction. With the assumption that one molecule of oxygen released after four hole-scavenging events, this translates into a very high average turnover frequency (280 s(-1)) for oxygen production.


Assuntos
Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Rutênio/química , Compostos de Tungstênio/química , Água/química , Catálise , Íons/química , Compostos Organometálicos/síntese química , Oxirredução , Processos Fotoquímicos
15.
J Phys Chem A ; 116(1): 119-31, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22103466

RESUMO

A series of dyads of general formula Ru(bpy)(2)(bpy-ph(n)-DQ)(4+) (n = 1-5), based on a Ru(II) polypyridine unit as photoexcitable donor, a set of oligo-p-phenylene bridges with 1-5 modular units, and a cyclo-diquaternarized 2,2'-bipyridine (DQ(2+)) as electron acceptor unit, have been synthesized. Their spectroscopic and photophysical properties have been investigated in CH(3)CN and CH(2)Cl(2) by time-resolved emission and absorption spectroscopy in the nanosecond and picosecond time scale. The experimental study has also been complemented with a computational investigation carried out on the whole series of dyads. The absorption spectra of the dyads show new spectroscopic transitions, in addition to those characteristic of the donor, bridge, and acceptor fragments. DFT calculations suggest the assignment of such bands as bridge-to-acceptor (π ph(n)) → (π* DQ) charge-transfer transitions. This assignment is consistent with the solvatochromic and spectroelectrochemical behavior of the new bands. For all the dyads at room temperature in fluid solution, the typical (3)MLCT luminescence of the Ru(II) polypyridine unit is strongly (>90%) quenched, supporting the occurrence of an efficient intramolecular photoinduced electron transfer. The study has revealed, however, that the photophysical mechanism is actually more complex than presumed on the basis of a simple photoinduced electron-transfer scheme. For n = 1, very fast (few picoseconds) photoinduced electron transfer from the MLCT state localized on the substituted bpy ligand to the DQ unit has been observed, followed by slower interligand hopping and charge recombination. For n = 2-5, MLCT excited-state quenching takes place without transient detection of charge-separated product, indicating that charge recombination is faster than charge separation. This behavior can be rationalized in terms of the superexchange couplings expected through this type of bridges for the two processes. The kinetics of MLCT quenching in the dyads with n = 1-5 does not follow the usual exponential falloff with bridge length: after a regular decrease for n = 1-3, the rate constants become almost insensitive to bridge length for n = 3-5. The rationale of this uncommon behavior, as suggested by DFT calculations, lies in a switch in the MLCT quenching mechanism with increasing bridge length, from oxidative quenching by the DQ acceptor to reductive quenching by the bridge.

16.
Chem Commun (Camb) ; 46(18): 3152-4, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20424757

RESUMO

The tetraruthenium polyoxometalate water oxidation catalyst 1 performs very fast hole scavenging from photogenerated Ru(iii) polypyridine complexes, both in homogeneous solution and at a sensitized nanocrystalline TiO(2) surface.

17.
J Phys Chem B ; 114(45): 14273-82, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20067230

RESUMO

The photophysical behavior of a series of heterometallic arrays made of a central Sn(IV) porphyrin connected, respectively, to two (SnRu(2)), four (SnRu(4)), or six (SnRu(6)) ruthenium porphyrin units has been studied in dichloromethane. Two different motifs connect the ruthenium porphyrin units to central tin porphyrin core, axial coordination via ditopic bridging ligands and/or coordination to peripheral pyridyl groups of the central porphyrin ring. A remarkable number of electron transfer processes (photoinduced charge separation and recombination processes) have been time-resolved using a combination of emission spectroscopy and fast (nanosecond) and ultrafast (femtosecond) absorption techniques. In these systems both types of molecular components can be selectively populated by light absorption. In all the arrays, the local excited states of these units (the tin porphyrin singlet excited state and the ruthenium porphyrin triplet state) are quenched by electron transfer leading to a charge-separated state where the ruthenium porphyrin unit is oxidized and the tin porphyrin unit is reduced. For each array, the two forward electron transfer processes, as well as the charge recombination process leading back to the ground state, have been kinetically resolved. The rate constants obey standard free-energy correlations with the forward processes lying in the normal free-energy regime and the back reactions in the Marcus inverted region. The comparison between the trimeric (SnRu(2)) and pentameric (SnRu(4)) arrays shows that all the electron transfer processes are faster in the latter than in the former system. This can be rationalized in terms of differences in electronic factors (due to the different connecting motifs) and driving force. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted, leading to a switch (from electron transfer to triplet energy transfer) in the deactivation mechanism of the excited ruthenium triplet.


Assuntos
Metaloporfirinas/química , Processos Fotoquímicos , Rutênio/química , Estanho/química , Transporte de Elétrons , Análise Espectral , Fatores de Tempo
19.
Inorg Chem ; 47(22): 10407-18, 2008 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-18947175

RESUMO

Four porphyrin-Re(I) conjugates, in which a pyridylporphyrin chromophore is directly coordinated to the electron-acceptor fragment [ fac-Re(CO) 3(bipy)] (+), were prepared: the dimeric and pentameric compounds [ fac-Re(CO) 3(bipy)(4'MPyP)](CF 3SO 3) ( 1) (4'MPyP = 4'-monopyridylporphyrin) and [ fac-{Re(CO) 3(bipy)} 4(mu-4'TPyP)](CF 3SO 3) 4 ( 2) (4'TPyP = 4'-tetrapyridylporphyrin), and the corresponding compounds with 3' rather than 4' porphyrins, [ fac-Re(CO) 3(bipy)(3'MPyP)](CF 3SO 3) ( 3) and [ fac-{Re(CO) 3(bipy)} 4(mu-3'TPyP)](CF 3SO 3) 4 ( 4). These adducts proved to be very stable in solution and were also structurally characterized in the solid state by X-ray crystallography. A detailed photophysical study was performed on the zincated adducts of the conjugates 1- 3, labeled 5, 6, and 7, respectively. In all adducts the typical fluorescence of the zinc-porphyrin unit was reduced in intensity and lifetime by the presence of the peripheral rhenium-bipy fragment(s) (heavy-atom effect). For the dyads 5 and 7 the photoinduced charge transfer process from the zinc-porphyrin to the Re(I)-bipy unit is only slightly exoergonic. Ultrafast spectroscopy experiments showed no evidence for electron transfer quenching in the dyads as such, whereas the addition of pyridine (that binds axially to zinc and thus affects the porphyrin redox potential) led to a moderately efficient photoinduced electron transfer process. In perspective, an appropriate functionalization of the bipy ligand and/or of the porphyrin chromophore might improve the thermodynamics and, thus the efficiency, of the photoinduced electron transfer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...