Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866497

RESUMO

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Assuntos
Camundongos Knockout , Fibras Musgosas Hipocampais , Plasticidade Neuronal , Terminações Pré-Sinápticas , Sinapsinas , Animais , Sinapsinas/metabolismo , Sinapsinas/genética , Fibras Musgosas Hipocampais/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(6): e2312281120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289953

RESUMO

The hippocampal formation is crucial for learning and memory, with submodule CA3 thought to be the substrate of pattern completion. However, the underlying synaptic and computational mechanisms of this network are not well understood. Here, we perform circuit reconstruction of a CA3 module using three dimensional (3D) electron microscopy data and combine this with functional connectivity recordings and computational simulations to determine possible CA3 network mechanisms. Direct measurements of connectivity schemes with both physiological measurements and structural 3D EM revealed a high connectivity rate, multi-fold higher than previously assumed. Mathematical modelling indicated that such CA3 networks can robustly generate pattern completion and replay memory sequences. In conclusion, our data demonstrate that the connectivity scheme of the hippocampal submodule is well suited for efficient memory storage and retrieval.


Assuntos
Hipocampo , Aprendizagem , Hipocampo/fisiologia , Aprendizagem/fisiologia , Modelos Teóricos , Região CA3 Hipocampal/fisiologia
3.
Glia ; 71(8): 1804-1829, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026600

RESUMO

Autoantibodies against the NR1 subunit of NMDA receptors (NMDARs) have been shown to promote crosslinking and internalization of bound receptors in NMDAR encephalitis (NMDARE). This internalization-mediated loss of NMDARs is thought to be the major mechanism leading to pathogenic outcomes in patients. However, the role of bound autoantibody in engaging the resident immune cells, microglia, remains poorly understood. Here, using a patient-derived monoclonal NR1 autoantibody (hNR1-mAb) and a co-culture system of microglia and neurons, we could show that hNR1-mAb bound to hippocampal neurons led to microglia-mediated removal of hNR1-mAb bound NMDARs. These complexes were found to accumulate inside endo-lysosomal compartments of microglia. Utilizing another patient isolated monoclonal autoantibody, against the α1-subunit of GABAA receptors (α1-GABAA -mAb), such removal of receptors was found to be specific to the antibody-bound receptor targets. Interestingly, along with receptor removal, we also observed a reduction in synapse number, more specifically in the numbers of post-synaptic proteins like PSD95 and Homer 1, when microglia were present in the culture. Importantly, mutations in the Fc region of hNR1-mAb, blocking its Fcγ receptor (FcγR) and complement binding, attenuated hNR1-mAb driven loss of NMDARs and synapses, indicating that microglia engagement by bound hNR1-mAb is critical for receptor and synapse loss. Our data argues for an active involvement of microglia in removal of NMDARs and other receptors in individuals with autoimmune encephalitis, thereby contributing to the etiology of these diseases.


Assuntos
Autoanticorpos , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Autoanticorpos/metabolismo , Técnicas de Cocultura , Microglia/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Cell Mol Life Sci ; 79(12): 600, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409372

RESUMO

Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.


Assuntos
Depressão , Sinapsinas , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Camundongos Knockout , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Cálcio/metabolismo
5.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983830

RESUMO

Information transfer and integration in the brain occurs at chemical synapses and is mediated by the fusion of synaptic vesicles filled with neurotransmitter. Synaptic vesicle dynamic spatial organization regulates synaptic transmission as well as synaptic plasticity. Because of their small size, synaptic vesicles require electron microscopy (EM) for their imaging, and their analysis is conducted manually. The manual annotation and segmentation of the hundreds to thousands of synaptic vesicles, is highly time consuming and limits the throughput of data collection. To overcome this limitation, we built an algorithm, mainly relying on convolutional neural networks (CNNs), capable of automatically detecting and localizing synaptic vesicles in electron micrographs. The algorithm was trained on murine synapses but we show that it works well on synapses from different species, ranging from zebrafish to human, and from different preparations. As output, we provide the vesicle count and coordinates, the nearest neighbor distance (nnd) and the estimate of the vesicles area. We also provide a graphical user interface (GUI) to guide users through image analysis, result visualization, and manual proof-reading. The application of our algorithm is especially recommended for images produced by transmission EM. Since this type of imaging is used routinely to investigate presynaptic terminals, our solution will likely be of interest for numerous research groups.


Assuntos
Vesículas Sinápticas , Peixe-Zebra , Animais , Humanos , Camundongos , Microscopia Eletrônica , Terminações Pré-Sinápticas , Sinapses
6.
PLoS Biol ; 19(6): e3001149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153028

RESUMO

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Assuntos
Fibras Musgosas Hipocampais/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Colforsina/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
7.
Antibiotics (Basel) ; 10(5)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065083

RESUMO

Intravenous drug incompatibilities are a common cause of medical errors, contributing to ineffective therapy and even life-threatening events. The co-administration of drugs must always be supported by studies confirming compatibility and thus guarantee the therapy's safety. Particular attention should be paid to the possible incompatibilities or degradation of intravenous cephalosporins in different infusion regimens since the administration of drugs with inadequate quality may cause treatment failure. Therefore, an appropriate stability test should be performed. The study aimed to present various aspects of the stability and compatibility of five cephalosporins: cefepime (CFE), cefuroxime (CFU), ceftriaxone (CFX), ceftazidime (CFZ), and cefazoline (CFL). The degradation studies in parenteral infusion fluids and PN admixtures were conducted for CFE and CFU. The interactions between CFX or CFZ and PN admixtures, as well as the compatibility of CFL with five commercial parenteral nutrition (PN) admixtures, were investigated. The content of CFX and CFZ in PN admixture after 24 h was >90%. CFL administered simultaneously with PN admixture by the same infusion set using Y-site was compatible only with Nutriflex Lipid Special. CFE and CFU were stable in all tested infusion fluids for a minimum of 48 h and decomposed in PN admixtures during storage.

8.
J Neurosci ; 40(14): 2943-2959, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122952

RESUMO

Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo KO (Pclogt/gt ) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared with WT (Pclowt/wt ) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar, and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber afferents from pontine neurons and the expression of the α6 GABAA receptor subunit at the mossy fiber-granule cell synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers. Ultrastructural and functional studies revealed a reduced size of mossy fiber boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation, and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclogt/gt rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together, these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder.SIGNIFICANCE STATEMENT Pontocerebellar Hypoplasia Type 3 is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures, and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the PCLO gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo KO rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with Pontocerebellar Hypoplasia Type 3 are also exhibited by these Piccolo deficient animals.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/fisiopatologia , Proteínas do Citoesqueleto/metabolismo , Neuropeptídeos/metabolismo , Atrofias Olivopontocerebelares , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Masculino , Fenótipo , Ratos
9.
Cell Rep ; 29(12): 3767-3774.e3, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851910

RESUMO

At presynaptic terminals, neurotransmitters are released by synaptic vesicle exocytosis at the active zone. In order to maintain efficient neurotransmission and proper synaptic structure, sites of vesicle fusion must be cleared rapidly by endocytosis. Therefore, the coupling of exo- and endocytosis is crucial. Despite many years of research, the exact molecular and biophysical requirements for the coupling of exo- and endocytosis remain unclear. We investigate whether endocytosis can be triggered in a calcium-independent fashion by evoking calcium-independent exocytosis using a hypertonic sucrose solution. We demonstrate that endocytosis can be triggered, in the absence of calcium influx, in a clathrin-independent manner that relies on actin polymerization. Our findings point to a central role of membrane tension dependent on actin for efficient coupling of exo- and endocytosis.


Assuntos
Encéfalo/fisiologia , Cálcio/metabolismo , Endocitose , Exocitose , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Actinas/metabolismo , Animais , Encéfalo/citologia , Clatrina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/fisiologia
10.
Elife ; 82019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816091

RESUMO

Munc13-1 plays a crucial role in neurotransmitter release. We recently proposed that the C-terminal region encompassing the C1, C2B, MUN and C2C domains of Munc13-1 (C1C2BMUNC2C) bridges the synaptic vesicle and plasma membranes through interactions involving the C2C domain and the C1-C2B region. However, the physiological relevance of this model has not been demonstrated. Here we show that C1C2BMUNC2C bridges membranes through opposite ends of its elongated structure. Mutations in putative membrane-binding sites of the C2C domain disrupt the ability of C1C2BMUNC2C to bridge liposomes and to mediate liposome fusion in vitro. These mutations lead to corresponding disruptive effects on synaptic vesicle docking, priming, and Ca2+-triggered neurotransmitter release in mouse neurons. Remarkably, these effects include an almost complete abrogation of release by a single residue substitution in this 200 kDa protein. These results show that bridging the synaptic vesicle and plasma membranes is a central function of Munc13-1.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Membranas Intracelulares/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Ratos
11.
J Neurosci ; 39(12): 2163-2183, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30655355

RESUMO

The regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin-dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated, and whether SVs are cleared en masse together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real-time to support synaptic health. To address these questions, we have developed an imaging-based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light-activated ROS generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy-mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons of either sex, presynaptic autophagy can be induced in as little as 5-10 min and eliminates primarily the damaged protein rather than the SV en masse. Importantly, we also find that autophagy is essential for synaptic function, as light-activated damage to, for example, Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function.SIGNIFICANCE STATEMENT The real-time surveillance and clearance of synaptic proteins are thought to be vital to the health, functionality, and integrity of vertebrate synapses and are compromised in neurodegenerative disorders, yet the fundamental mechanisms regulating these systems remain enigmatic. Our analysis reveals that presynaptic autophagy is a critical part of a real-time clearance system at synapses capable of responding to local damage of synaptic vesicle proteins within minutes and to be critical for the ongoing functionality of these synapses. These data indicate that synapse autophagy is not only locally regulated but also crucial for the health and functionality of vertebrate presynaptic boutons.


Assuntos
Autofagia/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Células HEK293 , Células HeLa , Hipocampo/ultraestrutura , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura
12.
Sci Rep ; 7(1): 13768, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061992

RESUMO

Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Plasticidade Neuronal , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sinapses/fisiologia , Membranas Sinápticas/metabolismo , Animais , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/ultraestrutura , Membranas Sinápticas/ultraestrutura
13.
Cell Rep ; 15(1): 117-131, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052163

RESUMO

Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.


Assuntos
Sinalização do Cálcio , Exocitose , Proteínas de Membrana/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagminas/metabolismo
14.
Cereb Cortex ; 26(3): 1149-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576534

RESUMO

The functional consequence of γ-aminobutyric acid (GABA) release at mossy fiber terminals is still a debated topic. Here, we provide multiple evidence of GABA release in cultured autaptic hippocampal granule cells. In ∼50% of the excitatory autaptic neurons, GABA, VGAT, or GAD67 colocalized with vesicular glutamate transporter 1-positive puncta, where both GABAB and GABAA receptors (Rs) were present. Patch-clamp recordings showed a clear enhancement of autaptic excitatory postsynaptic currents in response to the application of the GABABR antagonist CGP58845 only in neurons positive to the selective granule cell marker Prox1, and expressing low levels of GAD67. Indeed, GCP non-responsive excitatory autaptic neurons were both Prox1- and GAD67-negative. Although the amount of released GABA was not sufficient to activate functional postsynaptic GABAARs, it effectively activated presynaptic GABABRs that maintain a tonic "brake" on the probability of release and on the size of the readily releasable pool and contributed to resting potential hyperpolarization possibly through extrasynaptic GABAAR activation. The autocrine inhibition exerted by GABABRs on glutamate release enhanced both paired-pulse facilitation and post-tetanic potentiation. Such GABABR-mediated changes in short-term plasticity confer to immature granule cells the capability to modulate their filtering properties in an activity-dependent fashion, with remarkable consequences on the dynamic behavior of neural circuits.


Assuntos
Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glutamato Descarboxilase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
15.
Cell Stem Cell ; 17(6): 719-734, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26526726

RESUMO

Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Interneurônios/citologia , Prosencéfalo/citologia , Ácido gama-Aminobutírico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula , Técnicas de Cocultura , Células-Tronco Embrionárias/citologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Hipocampo/citologia , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Fatores de Transcrição SOXB1/metabolismo , Sinapses/metabolismo , Telencéfalo/citologia , Transcrição Gênica
16.
J Neurosci ; 34(44): 14752-68, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355227

RESUMO

Synapsins (Syns) are synaptic vesicle (SV)-associated proteins involved in the regulation of synaptic transmission and plasticity, which display a highly conserved ATP binding site in the central C-domain, whose functional role is unknown. Using molecular dynamics simulations, we demonstrated that ATP binding to SynI is mediated by a conformational transition of a flexible loop that opens to make the binding site accessible; such transition, prevented in the K269Q mutant, is not significantly affected in the absence of Ca(2+) or by the E373K mutation that abolishes Ca(2+)-binding. Indeed, the ATP binding to SynI also occurred under Ca(2+)-free conditions and increased its association with purified rat SVs regardless of the presence of Ca(2+) and promoted SynI oligomerization. However, although under Ca(2+)-free conditions, SynI dimerization and SV clustering were enhanced, Ca(2+) favored the formation of tetramers at the expense of dimers and did not affect SV clustering, indicating a role of Ca(2+)-dependent dimer/tetramer transitions in the regulation of ATP-dependent SV clustering. To elucidate the role of ATP/SynI binding in synaptic physiology, mouse SynI knock-out hippocampal neurons were transduced with either wild-type or K269Q mutant SynI and inhibitory transmission was studied by patch-clamp and electron microscopy. K269Q-SynI expressing inhibitory synapses showed increased synaptic strength due to an increase in the release probability, an increased vulnerability to synaptic depression and a dysregulation of SV trafficking, when compared with wild-type SynI-expressing terminals. The results suggest that the ATP-SynI binding plays predocking and postdocking roles in the modulation of SV clustering and plasticity of inhibitory synapses.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/ultraestrutura , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
17.
J Clin Invest ; 124(4): 1468-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24614104

RESUMO

The recent identification of multiple dominant mutations in the gene encoding ß-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of ß-catenin function in cognitive impairment. In humans, ß-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo ß-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with ß-catenin mutations enabled us to investigate the consequences of ß-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of ß-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in ß-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults.


Assuntos
Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Mutação , beta Catenina/genética , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Encéfalo/patologia , Caderinas/química , Pré-Escolar , Anormalidades Craniofaciais/patologia , DNA/genética , Modelos Animais de Doenças , Feminino , Genes Dominantes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Fenótipo , Homologia de Sequência de Aminoácidos , Síndrome , Adulto Jovem , beta Catenina/química , beta Catenina/metabolismo
18.
Front Cell Neurosci ; 7: 138, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009558

RESUMO

Neuronal circuit disturbances that lead to hyperexcitability in the cortico-hippocampal network are one of the landmarks of temporal lobe epilepsy. The dentate gyrus (DG) network plays an important role in regulating the excitability of the entire hippocampus by filtering and integrating information received via the perforant path. Here, we investigated possible epileptogenic abnormalities in the function of the DG neuronal network in the Synapsin II (Syn II) knockout mouse (Syn II(-/-)), a genetic mouse model of epilepsy. Syn II is a presynaptic protein whose deletion in mice reproducibly leads to generalized seizures starting at the age of 2 months. We made use of a high-resolution microelectrode array (4096 electrodes) and patch-clamp recordings, and found that in acute hippocampal slices of young pre-symptomatic (3-6 week-old) Syn II(-/-) mice excitatory synaptic output of the mossy fibers is reduced. Moreover, we showed that the main excitatory neurons present in the polymorphic layer of the DG, hilar mossy cells, display a reduced excitability. We also provide evidence of a predominantly inhibitory regulatory output from mossy cells to granule cells, through feed-forward inhibition, and show that the excitatory-inhibitory ratio is increased in both pre-symptomatic and symptomatic Syn II(-/-) mice. These results support the key role of the hilar mossy neurons in maintaining the normal excitability of the hippocampal network and show that the late epileptic phenotype of the Syn II(-/-) mice is preceded by neuronal circuitry dysfunctions. Our data provide new insights into the mechanisms of epileptogenesis in the Syn II(-/-) mice and open the possibility for early diagnosis and therapeutic interventions.

19.
EMBO J ; 32(12): 1730-44, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23685357

RESUMO

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Cognição/fisiologia , Espinhas Dendríticas/genética , Humanos , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sinapses/genética
20.
Hum Mol Genet ; 22(11): 2186-99, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23406870

RESUMO

Synapsin I (SynI) is a synaptic vesicle (SV) phosphoprotein playing multiple roles in synaptic transmission and plasticity by differentially affecting crucial steps of SV trafficking in excitatory and inhibitory synapses. SynI knockout (KO) mice are epileptic, and nonsense and missense mutations in the human SYN1 gene have a causal role in idiopathic epilepsy and autism. To get insights into the mechanisms of epileptogenesis linked to SYN1 mutations, we analyzed the effects of the recently identified Q555X mutation on neurotransmitter release dynamics and short-term plasticity (STP) in excitatory and inhibitory synapses. We used patch-clamp electrophysiology coupled to electron microscopy and multi-electrode arrays to dissect synaptic transmission of primary SynI KO hippocampal neurons in which the human wild-type and mutant SynI were expressed by lentiviral transduction. A parallel decrease in the SV readily releasable pool in inhibitory synapses and in the release probability in excitatory synapses caused a marked reduction in the evoked synchronous release. This effect was accompanied by an increase in asynchronous release that was much more intense in excitatory synapses and associated with an increased total charge transfer. Q555X-hSynI induced larger facilitation and post-tetanic potentiation in excitatory synapses and stronger depression after long trains in inhibitory synapses. These changes were associated with higher network excitability and firing/bursting activity. Our data indicate that imbalances in STP and release dynamics of inhibitory and excitatory synapses trigger network hyperexcitability potentially leading to epilepsy/autism manifestations.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Plasticidade Neuronal/genética , Sinapses/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Animais , Feminino , Expressão Gênica , Hipocampo/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Multimerização Proteica , Transporte Proteico , Sinapsinas/química , Potenciais Sinápticos , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...