Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(1): e4824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945533

RESUMO

The atomic-resolution structural information that X-ray crystallography can provide on the binding interface between a Fab and its cognate antigen is highly valuable for understanding the mechanism of interaction. However, many Fab:antigen complexes are recalcitrant to crystallization, making the endeavor a considerable effort with no guarantee of success. Consequently, there have been significant steps taken to increase the likelihood of Fab:antigen complex crystallization by altering the Fab framework. In this investigation, we applied the surface entropy reduction strategy coupled with phage-display technology to identify a set of surface substitutions that improve the propensity of a human Fab framework to crystallize. In addition, we showed that combining these surface substitutions with previously reported Crystal Kappa and elbow substitutions results in an extraordinary improvement in Fab and Fab:antigen complex crystallizability, revealing a strong synergistic relationship between these sets of substitutions. Through comprehensive Fab and Fab:antigen complex crystallization screenings followed by structure determination and analysis, we defined the roles that each of these substitutions play in facilitating crystallization and how they complement each other in the process.


Assuntos
Complexo Antígeno-Anticorpo , Fragmentos Fab das Imunoglobulinas , Humanos , Cristalização/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Complexo Antígeno-Anticorpo/química , Antígenos/química , Cristalografia por Raios X , Conformação Proteica
2.
EMBO Rep ; 23(12): e55044, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36278408

RESUMO

FBXW7, which encodes a substrate-specific receptor of an SCF E3 ligase complex, is a frequently mutated human tumor suppressor gene known to regulate the post-translational stability of various proteins involved in cellular proliferation. Here, using genome-wide CRISPR screens, we report a novel synthetic lethal genetic interaction between FBXW7 and CCNL1 and describe CCNL1 as a new substrate of the SCF-FBXW7 E3 ligase. Further analysis showed that the CCNL1-CDK11 complex is critical at the G2-M phase of the cell cycle since defective CCNL1 accumulation, resulting from FBXW7 mutation, leads to shorter mitotic time. Cells harboring FBXW7 loss-of-function mutations are hypersensitive to treatment with a CDK11 inhibitor, highlighting a genetic vulnerability that could be leveraged for cancer treatment.


Assuntos
Ciclinas , Proteína 7 com Repetições F-Box-WD , Ubiquitina-Proteína Ligases , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Ciclinas/metabolismo , Ubiquitinação
3.
J Med Chem ; 65(15): 10251-10284, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35880755

RESUMO

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.


Assuntos
Neoplasias , Proteínas Tirosina Quinases , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteínas de Membrana , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases
4.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705497

RESUMO

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

5.
Structure ; 29(9): 975-988.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33989513

RESUMO

Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.


Assuntos
Ciclina A/metabolismo , Proteínas Quinases Associadas a Fase S/química , Sítios de Ligação , Ciclina A/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Quinases Associadas a Fase S/metabolismo
6.
Nat Commun ; 11(1): 6233, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277478

RESUMO

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Assuntos
Proteínas Arqueais/química , Methanocaldococcus/metabolismo , Complexos Multiproteicos/química , RNA de Transferência/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Methanocaldococcus/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo
7.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778845

RESUMO

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Talidomida , Ubiquitina , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Terapia de Alvo Molecular , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Relação Estrutura-Atividade , Talidomida/análogos & derivados , Talidomida/química , Ubiquitina/química
8.
Nat Commun ; 8: 13943, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045046

RESUMO

The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.


Assuntos
Ciclina E/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/química , Proteínas Ligases SKP Culina F-Box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Clonagem Molecular , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Fosfopeptídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 113(13): 3527-32, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976582

RESUMO

Skp1-Cul1-F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface. Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.


Assuntos
Proteínas Culina/metabolismo , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Ubiquitinas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Culina/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/química , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Variação Genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Biblioteca de Peptídeos , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/química , Ubiquitinas/genética , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/genética
10.
Mol Cell ; 59(6): 970-83, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26344097

RESUMO

BRCC36 is a Zn(2+)-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN(+) domain protein BRCC36 associates with pseudo DUB MPN(-) proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. To understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer of heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. These data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.


Assuntos
Formigas/enzimologia , Proteínas de Insetos/química , Proteínas Associadas à Matriz Nuclear/química , Proteases Específicas de Ubiquitina/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Enzimas Desubiquitinantes , Células HEK293 , Células HeLa , Humanos , Proteínas de Insetos/fisiologia , Cinética , Proteínas de Membrana/química , Modelos Moleculares , Proteínas Associadas à Matriz Nuclear/fisiologia , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteases Específicas de Ubiquitina/fisiologia
11.
Mol Cell ; 53(2): 221-34, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462203

RESUMO

RNase L is an ankyrin repeat domain-containing dual endoribonuclease-pseudokinase that is activated by unusual 2,'5'-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon-regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small-angle X-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the nonhydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain, together with nucleotide binding, imposes a rigid intertwined dimer configuration that is essential for RNase catalytic and antiviral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold.


Assuntos
Nucleotídeos de Adenina/química , Endorribonucleases/química , Oligorribonucleotídeos/química , Difosfato de Adenosina/química , Adenilil Imidodifosfato/química , Animais , Repetição de Anquirina , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Vírus da Encefalomiocardite , Endorribonucleases/genética , Endorribonucleases/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Picornaviridae , Estrutura Terciária de Proteína , Espalhamento de Radiação , Relação Estrutura-Atividade , Sus scrofa
12.
Nat Chem Biol ; 10(2): 156-163, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316736

RESUMO

Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.


Assuntos
Aminoácidos/química , Compostos de Bifenilo/química , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Ubiquitina/química , Aminoácidos/farmacologia , Sítios de Ligação , Compostos de Bifenilo/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
13.
Proc Natl Acad Sci U S A ; 109(9): 3287-92, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22328159

RESUMO

The ubiquitin ligase SCF(Cdc4) (Skp1/Cul1/F-box protein) recognizes its substrate, the cyclin-dependent kinase inhibitor Sic1, in a multisite phosphorylation-dependent manner. Although short diphosphorylated peptides derived from Sic1 can bind to Cdc4 with high affinity, through systematic mutagenesis and quantitative biophysical analysis we show that individually weak, dispersed Sic1 phospho sites engage Cdc4 in a dynamic equilibrium. The affinities of individual phosphoepitopes serve to tune the overall phosphorylation site threshold needed for efficient recognition. Notably, phosphoepitope affinity for Cdc4 is dramatically weakened in the context of full-length Sic1, demonstrating the importance of regional environment on binding interactions. The multisite nature of the Sic1-Cdc4 interaction confers cooperative dependence on kinase activity for Sic1 recognition and ubiquitination under equilibrium reaction conditions. Composite dynamic interactions of low affinity sites may be a general mechanism to establish phosphorylation thresholds in biological responses.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sequência Consenso , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas F-Box/química , Proteínas F-Box/genética , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
14.
Mol Cell ; 45(3): 384-97, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22325355

RESUMO

Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibited E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.


Assuntos
Cisteína Endopeptidases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação , Leveduras/genética , Leveduras/crescimento & desenvolvimento
15.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21683433

RESUMO

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Assuntos
Aminoácidos/farmacologia , Compostos de Bifenilo/farmacologia , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Sítio Alostérico , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Enzimas de Conjugação de Ubiquitina , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/genética
16.
Mol Cell Biol ; 31(3): 584-98, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21098119

RESUMO

In the budding yeast Saccharomyces cerevisiae, mother cells switch mating types between a and α forms, whereas daughter cells do not. This developmental asymmetry arises because the expression of the HO endonuclease, which initiates the interconversion of a and α mating type cassettes, is extinguished by the daughter-specific Ash1 transcriptional repressor. When daughters become mothers in the subsequent cell cycle, Ash1 must be eliminated to enable a new developmental state. Here, we report that the ubiquitin ligase SCF(Cdc4) mediates the phosphorylation-dependent elimination of Ash1. The inactivation of SCF(Cdc4) stabilizes Ash1 in vivo, and consistently, Ash1 binds to and is ubiquitinated by SCF(Cdc4) in a phosphorylation-dependent manner in vitro. The mutation of a critical in vivo cyclin-dependent kinase (CDK) phosphorylation site (Thr290) on Ash1 reduces its ubiquitination and rate of degradation in vivo and decreases the frequency of mating type switching. Ash1 associates with active Cdc28 kinase in vivo and is targeted to SCF(Cdc4) in a Cdc28-dependent fashion in vivo and in vitro. Ash1 recognition by Cdc4 appears to be mediated by at least three phosphorylation sites that form two redundant diphosphorylated degrons. The phosphorylation-dependent elimination of Ash1 by the ubiquitin-proteasome system thus underpins developmental asymmetry in budding yeast.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas F-Box/metabolismo , Genes Fúngicos Tipo Acasalamento , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Inativação Gênica , Dados de Sequência Molecular , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transporte Proteico , Proteínas Repressoras/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Ubiquitinação
17.
Nat Biotechnol ; 28(7): 733-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20581844

RESUMO

The specificity of SCF ubiquitin ligase-mediated protein degradation is determined by F-box proteins. We identified a biplanar dicarboxylic acid compound, called SCF-I2, as an inhibitor of substrate recognition by the yeast F-box protein Cdc4 using a fluorescence polarization screen to monitor the displacement of a fluorescein-labeled phosphodegron peptide. SCF-I2 inhibits the binding and ubiquitination of full-length phosphorylated substrates by SCF(Cdc4). A co-crystal structure reveals that SCF-I2 inserts itself between the beta-strands of blades 5 and 6 of the WD40 propeller domain of Cdc4 at a site that is 25 A away from the substrate binding site. Long-range transmission of SCF-I2 interactions distorts the substrate binding pocket and impedes recognition of key determinants in the Cdc4 phosphodegron. Mutation of the SCF-I2 binding site abrogates its inhibitory effect and explains specificity in the allosteric inhibition mechanism. Mammalian WD40 domain proteins may exhibit similar allosteric responsiveness and hence represent an extensive class of druggable target.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Modelos Moleculares , Conformação Proteica , Ubiquitina-Proteína Ligases/antagonistas & inibidores
18.
Structure ; 18(4): 494-506, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20399186

RESUMO

Intrinsically disordered proteins can form highly dynamic complexes with partner proteins. One such dynamic complex involves the intrinsically disordered Sic1 with its partner Cdc4 in regulation of yeast cell cycle progression. Phosphorylation of six N-terminal Sic1 sites leads to equilibrium engagement of each phosphorylation site with the primary binding pocket in Cdc4, the substrate recognition subunit of a ubiquitin ligase. ENSEMBLE calculations using experimental nuclear magnetic resonance and small-angle X-ray scattering data reveal significant transient structure in both phosphorylation states of the isolated ensembles (Sic1 and pSic1) that modulates their electrostatic potential, suggesting a structural basis for the proposed strong contribution of electrostatics to binding. A structural model of the dynamic pSic1-Cdc4 complex demonstrates the spatial arrangements in the ubiquitin ligase complex. These results provide a physical picture of a protein that is predominantly disordered in both its free and bound states, enabling aspects of its structure/function relationship to be elucidated.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Proteínas F-Box/fisiologia , Proteínas Ligases SKP Culina F-Box/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X/métodos , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas F-Box/genética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento de Radiação , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato , Treonina/química , Ubiquitina-Proteína Ligases/genética
19.
Proc Natl Acad Sci U S A ; 105(46): 17772-7, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19008353

RESUMO

Intrinsically disordered proteins play critical but often poorly understood roles in mediating protein interactions. The interactions of disordered proteins studied to date typically entail structural stabilization, whether as a global disorder-to-order transition or minimal ordering of short linear motifs. The disordered cyclin-dependent kinase (CDK) inhibitor Sic1 interacts with a single site on its receptor Cdc4 only upon phosphorylation of its multiple dispersed CDK sites. The molecular basis for this multisite-dependent interaction with a single receptor site is not known. By NMR analysis, we show that multiple phosphorylated sites on Sic1 interact with Cdc4 in dynamic equilibrium with only local ordering around each site. Regardless of phosphorylation status, Sic1 exists in an intrinsically disordered state but is surprisingly compact with transient structure. The observation of this unusual binding mode between Sic1 and Cdc4 extends the understanding of protein interactions from predominantly static complexes to include dynamic ensembles of intrinsically disordered states.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas Inibidoras de Quinase Dependente de Ciclina , Proteínas F-Box/química , Isomerismo , Ligantes , Fosforilação , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligases/química
20.
Mol Cell ; 32(2): 259-75, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951093

RESUMO

Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family.


Assuntos
Proteínas Arqueais/química , Complexos Multiproteicos/química , Proteínas Quinases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Transporte/química , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mathanococcus/genética , Mathanococcus/metabolismo , Modelos Moleculares , Complexos Multiproteicos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Homologia de Sequência de Aminoácidos , Telômero/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...