Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(2): 950-967, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962391

RESUMO

The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear µ3-oxido clusters [Fe2RuCl4(µ3-O)(µ-OMe)(µ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear µ4-oxido complex [Ga3RuCl3(µ4-O)(µ-OMe)3(µ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(µ-OH)(µ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis.

2.
Inorg Chem ; 57(17): 10702-10717, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30106571

RESUMO

With the aim of enhancing the biological activity of ruthenium-nitrosyl complexes, new compounds with four equatorially bound indazole ligands, namely, trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), have been prepared from trans-[Ru(NO2)2(Hind)4] ([2]). When the pH-dependent solution behavior of [3]Cl2·H2O and [4]Cl2·H2O was studied, two new complexes with two deprotonated indazole ligands were isolated, namely [RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]). All prepared compounds were comprehensively characterized by spectroscopic (IR, UV-vis, 1H NMR) techniques. Compound [2], as well as [3]Cl2·2(CH3)2CO, [4]Cl2·2(CH3)2CO, and [5]·0.8CH2Cl2, the latter three obtained by recrystallization of the first isolated compounds (hydrates or anhydrous species) from acetone and dichloromethane, respectively, were studied by X-ray diffraction methods. The photoinduced release of NO in [3]Cl2 and [4]Cl2 was investigated by cyclic voltammetry and resulting paramagnetic NO species were detected by EPR spectroscopy. The quantum yields of NO release were calculated and found to be low (3-6%), which could be explained by NO dissociation and recombination dynamics, assessed by femtosecond pump-probe spectroscopy. The geometry and electronic parameters of Ru species formed upon NO release were identified by DFT calculations. The complexes [3]Cl2 and [4]Cl2 showed considerable antiproliferative activity in human cancer cell lines with IC50 values in low micromolar or submicromolar concentration range and are suitable for further development as potential anticancer drugs. p53-dependence of Ru-NO complexes [3]Cl2 and [4]Cl2 was studied and p53-independent mode of action was confirmed. The effects of NO release on the cytotoxicity of the complexes with or without light irradiation were investigated using NO scavenger carboxy-PTIO.


Assuntos
Indazóis/química , Óxido Nítrico/química , Óxidos de Nitrogênio , Compostos Organometálicos , Rutênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Western Blotting , Sobrevivência Celular , Cisplatino/farmacologia , Estabilidade de Medicamentos , Eletroquímica , Células HCT116 , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Teoria Quântica , Rutênio/química , Rutênio/farmacologia , Água/química , Difração de Raios X
3.
Ann Agric Environ Med ; 24(3): 453-458, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28954489

RESUMO

INTRODUCTION: The main mediators of the sympathetic nervous system in the effectors part are catecholamines (CA). An increased sympathetic nerve activity observed in chronic kidney disease (CKD), is due to a raised level of CA in plasma. Renalase is a protein secreted by the kidneys, composed of 342 amino acids, which is able to metabolize the circulating CA and possibly play an important role in the regulation of sympathetic tone and blood pressure. Also, oxidative stress, defined as a disruption of the equilibrium between the generation of oxidants, is a crucial factor in the development of the inflammatory syndrome associated with CKD. The advanced oxidation protein products (AOPP) represent exquisite markers of phagocyte-derived oxidative stress. OBJECTIVE: The aim of the study was to investigate the concentration of renalase and explore the associations between AOPP with regards to CA in haemodialysis (HD) patients. MATERIAL AND METHODS: The study was conducted among 50 residents of the municipality and neighbouring villages in the province of Lublin, central-eastern Poland. RESULTS: In the studied patients, it was found that an average concentration of renalase was 44.8 ± 6.5 µg/mL, whereas of AOPP plasma levels - 57.5 ± 21.5 µmol/L. The results demonstrated the correlation between levels of renalase and AOPP in the HD patients. Indeed, elevated levels of renalase and AOPP in HD may be due to the presence of uremic toxins in blood. The concentration of urea affects the plasma concentrations of AOPP and renalase causing a direct relationship between renalase and AOPP. However, there is no clear relationship between renalase and circulating catecholamines in HD patients.


Assuntos
Produtos da Oxidação Avançada de Proteínas/sangue , Catecolaminas/sangue , Falência Renal Crônica/sangue , Monoaminoxidase/sangue , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Falência Renal Crônica/enzimologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Polônia , Diálise Renal
4.
PLoS One ; 12(6): e0179218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28614373

RESUMO

BACKGROUND: microRNA (miRNA) belongs to the non-coding RNAs family responsible for the regulation of gene expression. Renalase is a protein composed of 342 amino acids, secreted by the kidneys and possibly plays an important role in the regulation of sympathetic tone and blood pressure. The aim of the present study was to investigate plasma renalase concentration, and explore the relationship between miRNA-146a-5p expression and plasma renalase levels in hemodialyzed patients. METHODS: The study population comprised 55 subjects who succumbed to various cardiac events, 27 women and 28 men, aged 65-70 years. The total RNA including miRNA fraction was isolated using QiagenmiRNEasy Serum/Plasma kit according to the manufacturer's protocol. The isolated miRNAs were analyzed using a quantitative polymerase chain reaction (qRT-PCR) technique. The plasma renalase levels were measured using a commercial ELISA kit. RESULTS: In the group of patients with high levels of renalase, higher miRNA-146a expression was found, compared with those with low concentration of renalase. Patients with simultaneous low miRNA-146a expression and high level of renalase were confirmed to deliver a significantly longer survival time compared with other patients. CONCLUSIONS: miRNA-146a and plasma renalase levels were estimated as independent prognostic factors of hemodialyzed patients' survival time. Patients with low miRNA-146a expression demonstrated a significantly longer survival time in contrast to the patients with a high expression level of miRNA-146a. Moreover, a significantly longer survival time was found in patients with high renalase activity compared with patients with low activity of the enzyme.


Assuntos
MicroRNAs/genética , Monoaminoxidase/sangue , Diálise Renal/mortalidade , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Análise de Sobrevida
5.
Sci Total Environ ; 577: 94-104, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810305

RESUMO

A series of monomeric and dimeric FeIII complexes with O,O-; O,N-; O,S-coordination motifs has been prepared and characterized by standard analytical methods in order to elucidate their potential to act as model compounds for aquatic humic acids. Due to the postulated reduction of iron in humic acids and following uptake by microorganisms, the redox behavior of the models was investigated with cyclic voltammetry. Most of the investigated compounds showed iron reduction potentials accessible to biological reducing agents. Additionally, observed reduction processes were predominantly irreversible, suggesting that subsequent reactions can take place after reduction of the iron center. Also the stability of the synthesized complexes in pure water and artificial seawater was monitored from 24h up to 21days by means of UV-Vis spectrometry. Several complexes remained stable even after 21days, showing only partially precipitation but some of them showed changes in UV-Vis spectra already after 24h which were connected to protonation/deprotonation processes as well as redox processes and degradation of the complexes. The ability to act as an iron source for primary producers was tested in algal growth experiments with two marine algae species Chlorella salina and Prymnesium parvum. Some of the compounds showed effects on the algal cultures, which are comparable with natural humic acids and better as for the samples kept under ideal conditions. Those findings help to understand which functional groups of humic acids could be responsible for the reversible iron binding and transport in aquatic humic substances.


Assuntos
Chlorella/crescimento & desenvolvimento , Haptófitas/crescimento & desenvolvimento , Substâncias Húmicas/análise , Compostos de Ferro/química , Ferro , Oxirredução
6.
Angew Chem Weinheim Bergstr Ger ; 128(22): 6527-6532, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27478277

RESUMO

Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII-HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

7.
Angew Chem Int Ed Engl ; 55(22): 6417-22, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27100573

RESUMO

Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe(III) -HS in oceanic conditions into bioavailable aquatic Fe(II) forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.


Assuntos
Substâncias Húmicas , Ferro/metabolismo , Oceanos e Mares , Ferro/química , Oxirredução , Processos Fotoquímicos
8.
Postepy Hig Med Dosw (Online) ; 70(0): 1362-1366, 2016 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28234233

RESUMO

MicroRNA (miRNA) belongs to the family of non-coding RNAs, which posttranscriptionally regulate gene function. Moreover, accumulating evidence points to an essential role of miRNAs in development and monitoring of kidney disease, though the role of particular miRNAs in patients undergoing hemodialysis is still unclear. This might have consequences. It is possible that measuring a single miRNA in hemodialyzed patients may not provide adequate information about development of many pathological processes. The goal of this review is to highlight the current knowledge in the field of miRNAs, with a special emphasis on their circulation in hemodialyzed patients.


Assuntos
Falência Renal Crônica/metabolismo , MicroRNAs/metabolismo , Diálise Renal , Biomarcadores/metabolismo , Humanos , Falência Renal Crônica/terapia , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...