Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1360352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751776

RESUMO

Background: Prostate cancer is a leading cause of cancer-related deaths among men, marked by heterogeneous clinical and molecular characteristics. The complexity of the molecular landscape necessitates tools for identifying multi-gene co-alteration patterns that are associated with aggressive disease. The identification of such gene sets will allow for deeper characterization of the processes underlying prostate cancer progression and potentially lead to novel strategies for treatment. Methods: We developed ProstaMine to systematically identify co-alterations associated with aggressiveness in prostate cancer molecular subtypes defined by high-fidelity alterations in primary prostate cancer. ProstaMine integrates genomic, transcriptomic, and clinical data from five primary and one metastatic prostate cancer cohorts to prioritize co-alterations enriched in metastatic disease and associated with disease progression. Results: Integrated analysis of primary tumors defined a set of 17 prostate cancer alterations associated with aggressive characteristics. We applied ProstaMine to NKX3-1-loss and RB1-loss tumors and identified subtype-specific co-alterations associated with metastasis and biochemical relapse in these molecular subtypes. In NKX3-1-loss prostate cancer, ProstaMine identified novel subtype-specific co-alterations known to regulate prostate cancer signaling pathways including MAPK, NF-kB, p53, PI3K, and Sonic hedgehog. In RB1-loss prostate cancer, ProstaMine identified novel subtype-specific co-alterations involved in p53, STAT6, and MHC class I antigen presentation. Co-alterations impacting autophagy were noted in both molecular subtypes. Conclusion: ProstaMine is a method to systematically identify novel subtype-specific co-alterations associated with aggressive characteristics in prostate cancer. The results from ProstaMine provide insights into potential subtype-specific mechanisms of prostate cancer progression which can be formed into testable experimental hypotheses. ProstaMine is publicly available at: https://bioinformatics.cuanschutz.edu/prostamine.

2.
Cancer Res ; 84(10): 1699-1718, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535994

RESUMO

There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations. SIGNIFICANCE: Targeting NPEPPS, which induces cisplatin resistance by controlling intracellular drug concentrations, is a potential strategy to improve patient responses to platinum-based therapies and lower treatment-associated toxicities.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Aminopeptidases/genética , Aminopeptidases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Organoides/efeitos dos fármacos , Organoides/metabolismo
3.
Sci Data ; 10(1): 430, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407670

RESUMO

Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or  not standardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Perfilação da Expressão Gênica , Genômica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes , Transcriptoma , Conjuntos de Dados como Assunto , Metanálise como Assunto
4.
Oncogene ; 40(16): 2884-2897, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742123

RESUMO

Epithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed epithelial-mesenchymal plasticity (EMP). In cancer, the acquisition of EMP results in a spectrum of phenotypes, promoting tumor cell heterogeneity and resistance to standard of care therapy. Here we describe a real-time fluorescent dual-reporter for vimentin and E-cadherin, biomarkers of the mesenchymal and epithelial cell phenotypes, respectively. Stable dual-reporter cell lines generated from colorectal (SW620), lung (A549), and breast (MDA-MB-231) cancer demonstrate a spectrum of EMT cell phenotypes. We used the dual-reporter to isolate the quasi epithelial, epithelial/mesenchymal, and mesenchymal phenotypes. Although EMT is a dynamic process, these isolated quasi-EMT-phenotypes remain stable to spontaneous EMP in the absence of stimuli and during prolonged cell culture. However, the quasi-EMT phenotypes can readily be induced to undergo EMT or MET with growth factors or small molecules. Moreover, isolated EMT phenotypes display different tumorigenic properties and are morphologically and metabolically distinct. 3D high-content screening of ~23,000 compounds using dual-reporter mesenchymal SW620 tumor organoids identified small molecule probes that modulate EMT, and a subset of probes that effectively induced MET. The tools, probes, and models described herein provide a coherent mechanistic understanding of mesenchymal cell plasticity. Future applications utilizing this technology and probes are expected to advance our understanding of EMT and studies aimed at therapeutic strategies targeting EMT.


Assuntos
Plasticidade Celular/genética , Neoplasias/metabolismo , Transição Epitelial-Mesenquimal , Humanos
5.
Stem Cell Reports ; 14(2): 256-270, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31928950

RESUMO

Human induced pluripotent stem cell (hiPSC) culture has become routine, yet the cost of pluripotent cell media, frequent medium changes, and the reproducibility of differentiation have remained restrictive. Here, we describe the formulation of a hiPSC culture medium (B8) as a result of the exhaustive optimization of medium constituents and concentrations, establishing the necessity and relative contributions of each component to the pluripotent state and cell proliferation. The reagents in B8 represent only 3% of the costs of commercial media, made possible primarily by the in-lab generation of three E. coli-expressed, codon-optimized recombinant proteins: fibroblast growth factor 2, transforming growth factor ß3, and neuregulin 1. We demonstrate the derivation and culture of 34 hiPSC lines in B8 as well as the maintenance of pluripotency long term (over 100 passages). This formula also allows a weekend-free feeding schedule without sacrificing capacity for differentiation.


Assuntos
Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Bioensaio , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...