Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 309: 103999, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36460253

RESUMO

BACKGROUND: In experimental sepsis, functional and morphological effects of bone marrow-derived mononuclear cell (BMDMC) administration in lung tissue have been evaluated 1 and 7 days after therapy. However, to date no study has evaluated the early effects of BMDMCs in both lung and kidney in experimental polymicrobial sepsis. MATERIAL AND METHODS: Twenty-five female C57BL/6 mice were randomly divided into the following groups: 1) cecal ligation and puncture (CLP)-induced sepsis; and 2) Sham (surgical procedure without CLP). After 1 h, CLP animals received saline (NaCl 0.9%) (CLP-Saline) or 106 BMDMCs (CLP-Cell) via the jugular vein. At 6, 12, and 24 h after saline or BMDMC administration, lungs and kidneys were removed for histology and molecular biology analysis. RESULTS: In lungs, CLP-Saline, compared to Sham, was associated with increased lung injury score (LIS) and keratinocyte chemoattractant (KC) mRNA expression at 6, 12, and 24 h. BMDMCs were associated with reduced LIS and KC mRNA expression regardless of the time point of analysis. Interleukin (IL)- 10 mRNA content was higher in CLP-Cell than CLP-Saline at 6 and 24 h. In kidney tissue, CLP-Saline, compared to Sham, was associated with tubular cell injury and increased neutrophil gelatinase-associated lipocalin (NGAL) levels, which were reduced after BMDMC therapy at all time points. Surface high-mobility-group-box (HMGB)- 1 levels were higher in CLP-Saline than Sham at 6, 12, and 24 h, whereas nuclear HMGB-1 levels were increased only at 24 h. BMDMCs were associated with decreased surface HMGB-1 and increased nuclear HMGB-1 levels. Kidney injury molecule (KIM)- 1 and IL-18 gene expressions were reduced in CLP-Cell compared to CLP-Saline at 12 and 24 h. CONCLUSION: In the present experimental polymicrobial sepsis, early intravenous therapy with BMDMCs was able to reduce lung and kidney damage in a time-dependent manner. BMDMCs thus represent a potential therapy in well-known scenarios of sepsis induction. PURPOSE: To evaluate early bone marrow-derived mononuclear cell (BMDMC) therapy on lung and kidney in experimental polymicrobial sepsis. METHODS: Twenty-five female C57BL/6 mice were randomly divided into the following groups: cecal ligation and puncture (CLP)-induced sepsis; and sham (surgical procedure without CLP). After 1 h, CLP animals received saline (CLP-saline) or 106 BMDMCs (CLP-cell) via the jugular vein. Lungs and kidneys were evaluated for histology and molecular biology after 6, 12, and 24 h. RESULTS: In lungs, BMDMCs reduced the lung injury score and keratinocyte chemoattractant mRNA expression regardless of the time point of analysis; interleukin-10 mRNA content was higher in CLP-cell than CLP-saline at 6 and 24 h. In kidneys, BMDMCs reduced neutrophil gelatinase-associated lipocalin levels at all time points. BMDMCs decreased surface high mobility group box (HMGB)- 1 but increased nuclear HMGB-1 levels. CONCLUSION: Early BMDMC therapy reduced lung and kidney damage in a time-dependent manner.


Assuntos
Lesão Pulmonar , Sepse , Camundongos , Animais , Feminino , Lipocalina-2/metabolismo , Lesão Pulmonar/complicações , Medula Óssea/metabolismo , Medula Óssea/patologia , Camundongos Endogâmicos C57BL , Rim/metabolismo , Pulmão/metabolismo , Sepse/complicações , Fatores Quimiotáticos/metabolismo , RNA Mensageiro/metabolismo , Proteínas HMGB/metabolismo
2.
Mol Neurobiol ; 60(2): 481-494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36280654

RESUMO

Acute cerebral dysfunction is a pathological state common in severe infections and a pivotal determinant of long-term cognitive outcomes. Current evidence indicates that a loss of synaptic contacts orchestrated by microglial activation is central in sepsis-associated encephalopathy. However, the upstream signals that lead to microglial activation and the mechanism involved in microglial-mediated synapse dysfunction in sepsis are poorly understood. This study investigated the involvement of the NLRP3 inflammasome in microglial activation and synaptic loss related to sepsis. We demonstrated that septic insult using the cecal ligation and puncture (CLP) model induced the expression of NLRP3 inflammasome components in the brain, such as NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, and IL-1ß. Immunostaining techniques revealed increased expression of the NLRP3 inflammasome in microglial cells in the hippocampus of septic mice. Meanwhile, an in vitro model of primary microglia stimulated with LPS exhibited an increase in mitochondrial reactive oxygen species (ROS) production, NLRP3 complex recruitment, and IL-1ß release. Pharmacological inhibition of NLRP3, caspase-1, and mitochondrial ROS all decreased IL-1ß secretion by microglial cells. Furthermore, we found that microglial NLRP3 activation is the main pathway for IL-1ß-enriched microvesicle (MV) release, which is caspase-1-dependent. MV released from LPS-activated microglia induced neurite suppression and excitatory synaptic loss in neuronal cultures. Moreover, microglial caspase-1 inhibition prevented neurite damage and attenuated synaptic deficits induced by the activated microglial MV. These results suggest that microglial NLRP3 inflammasome activation is the mechanism of IL-1ß-enriched MV release and potentially synaptic impairment in sepsis.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Animais , Camundongos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos NOD , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/metabolismo , Encefalopatia Associada a Sepse/metabolismo
3.
BMC Nephrol ; 21(1): 206, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471386

RESUMO

BACKGROUND: Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. METHODS: We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-ß1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1ß, procollagens type I, III, and IV) for mRNA quantification. RESULTS: The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- ß1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1ß mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1ß mRNAs, as well as less immunoreactivity of HSP-47, TGF-ß, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. CONCLUSION: BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.


Assuntos
Proliferação de Células/efeitos dos fármacos , Rim/patologia , Nefrite/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Corantes de Rosanilina/uso terapêutico , Obstrução Ureteral/complicações , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose/efeitos dos fármacos , Movimento Celular , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Colágeno Tipo IV/genética , Fibrose , Proteínas de Choque Térmico HSP47/metabolismo , Interleucina-1beta/genética , Rim/metabolismo , Túbulos Renais/patologia , Macrófagos/fisiologia , Masculino , Miofibroblastos/fisiologia , Nefrite/etiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Corantes de Rosanilina/farmacologia , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
4.
Cell Physiol Biochem ; 41(5): 1736-1752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28365681

RESUMO

BACKGROUND/AIMS: We investigated the regenerative capacity of intravenous administration of bone marrow-derived mononuclear cells (BMMCs) in a rat model of bilateral renal ischemia/reperfusion (IR) injury and the involvement of inflammatory anti-inflammatory and other biological markers in this process. METHODS: Rats were subjected to 1h bilateral renal pedicle clamping. BMMCs were injected i.v 1h after reperfusion and tracked by 99mTc and GFP+ BMMCs. Twenty-four hours after reperfusion, renal function and histological changes were evaluated. The mRNA (real time PCR) and protein (ELISA and immuno-staining) expression of biological markers were analyzed. RESULTS: Renal function and structure improved after infusion of BMMCs in the IR group (IR-C). Labeled BMMCs were found in the kidneys after therapy. The expression of inflammatory and biological markers (TLR-2, TRL-4, RAGE, IL-17, HMGB-1, KIM-1) were reduced and the expression of anti-inflammatory and antioxidant markers (IL-10, Nrf2, and HO-1) were increased in IR-C animals compared with IR untreated animals (IR-S). The apoptotic index diminished and the proliferation index increased in IR-C compared with IR-S. CONCLUSION: The results contribute to our understanding of the role of different biological players in morphofunctional renal improvement and cytoprotection in a post-ischemic reperfusion kidney injury model subjected to cellular therapy.


Assuntos
Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Transplante de Medula Óssea , Mediadores da Inflamação/metabolismo , Nefropatias , Traumatismo por Reperfusão , Aloenxertos , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/terapia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia
5.
Crit Care Med ; 44(7): e553-62, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26963321

RESUMO

OBJECTIVES: The biologic effects of variable ventilation may depend on the etiology of acute respiratory distress syndrome. We compared variable and conventional ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. DESIGN: Prospective, randomized, controlled experimental study. SETTINGS: University research laboratory. SUBJECTS: Twenty-four Wistar rats. INTERVENTIONS: Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide administered intratracheally (pulmonary acute respiratory distress syndrome, n = 12) or intraperitoneally (extrapulmonary acute respiratory distress syndrome, n = 12). After 24 hours, animals were randomly assigned to receive conventional (volume-controlled ventilation, n = 6) or variable ventilation (n = 6). Nonventilated animals (n = 4 per etiology) were used for comparison of diffuse alveolar damage, E-cadherin, and molecular biology variables. Variable ventilation was applied on a breath-to-breath basis as a sequence of randomly generated tidal volume values (n = 600; mean tidal volume = 6 mL/kg), with a 30% coefficient of variation (normal distribution). After randomization, animals were ventilated for 1 hour and lungs were removed for histology and molecular biology analysis. MEASUREMENTS AND MAIN RESULTS: Variable ventilation improved oxygenation and reduced lung elastance compared with volume-controlled ventilation in both acute respiratory distress syndrome etiologies. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, variable ventilation 1) decreased total diffuse alveolar damage (median [interquartile range]: volume-controlled ventilation, 12 [11-17] vs variable ventilation, 9 [8-10]; p < 0.01), interleukin-6 expression (volume-controlled ventilation, 21.5 [18.3-23.3] vs variable ventilation, 5.6 [4.6-12.1]; p < 0.001), and angiopoietin-2/angiopoietin-1 ratio (volume-controlled ventilation, 2.0 [1.3-2.1] vs variable ventilation, 0.7 [0.6-1.4]; p < 0.05) and increased relative angiopoietin-1 expression (volume-controlled ventilation, 0.3 [0.2-0.5] vs variable ventilation, 0.8 [0.5-1.3]; p < 0.01). In extrapulmonary acute respiratory distress syndrome, only volume-controlled ventilation increased vascular cell adhesion molecule-1 messenger RNA expression (volume-controlled ventilation, 7.7 [5.7-18.6] vs nonventilated, 0.9 [0.7-1.3]; p < 0.05). E-cadherin expression in lung tissue was reduced in volume-controlled ventilation compared with nonventilated regardless of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, E-cadherin expression was similar in volume-controlled ventilation and variable ventilation; in extrapulmonary acute respiratory distress syndrome, however, it was higher in variable ventilation than in volume-controlled ventilation. CONCLUSIONS: Variable ventilation improved lung function in both pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome. Variable ventilation led to more pronounced beneficial effects in biologic marker expressions in pulmonary acute respiratory distress syndrome compared with extrapulmonary acute respiratory distress syndrome but preserved E-cadherin in lung tissue only in extrapulmonary acute respiratory distress syndrome, thus suggesting lower damage to epithelial cells.


Assuntos
Pulmão/fisiopatologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória , Animais , Lipopolissacarídeos , Pulmão/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/fisiopatologia , Volume de Ventilação Pulmonar
6.
Anesthesiology ; 122(1): 106-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25141026

RESUMO

BACKGROUND: Mechanical ventilation can lead to lung biotrauma when mechanical stress exceeds safety thresholds. The authors investigated whether the duration of mechanical stress, that is, the impact of a stress versus time product (STP), influences biotrauma. The authors hypothesized that higher STP levels are associated with increased inflammation and with alveolar epithelial and endothelial cell injury. METHODS: In 46 rats, Escherichia coli lipopolysaccharide (acute lung inflammation) or saline (control) was administered intratracheally. Both groups were protectively ventilated with inspiratory-to-expiratory ratios 1:2, 1:1, or 2:1 (n = 12 each), corresponding to low, middle, and high STP levels (STPlow, STPmid, and STPhigh, respectively). The remaining 10 animals were not mechanically ventilated. RESULTS: In animals with mild acute lung inflammation, but not in controls: (1) messenger RNA expression of interleukin-6 was higher in STPhigh (28.1 ± 13.6; mean ± SD) and STPlow (28.9 ± 16.0) versus STPmid (7.4 ± 7.5) (P < 0.05); (2) expression of the receptor for advanced glycation end-products was increased in STPhigh (3.6 ± 1.6) versus STPlow (2.3 ± 1.1) (P < 0.05); (3) alveolar edema was decreased in STPmid (0 [0 to 0]; median, Q1 to Q3) compared with STPhigh (0.8 [0.6 to 1]) (P < 0.05); and (4) expressions of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 were higher in STPlow (3.0 ± 1.8) versus STPhigh (1.2 ± 0.5) and STPmid (1.4 ± 0.7) (P < 0.05), respectively. CONCLUSIONS: In the mild acute lung inflammation model used herein, mechanical ventilation with inspiratory-to-expiratory of 1:1 (STPmid) minimized lung damage, whereas STPhigh increased the gene expression of biological markers associated with inflammation and alveolar epithelial cell injury and STPlow increased markers of endothelial cell damage.


Assuntos
Endotélio/fisiopatologia , Inflamação/sangue , Alvéolos Pulmonares/fisiopatologia , Respiração Artificial/efeitos adversos , Mucosa Respiratória/fisiopatologia , Estresse Fisiológico/fisiologia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Endotélio/metabolismo , Inflamação/etiologia , Molécula 1 de Adesão Intercelular/sangue , Interleucina-6/sangue , Masculino , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Wistar , Respiração Artificial/métodos , Mucosa Respiratória/metabolismo , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/sangue
7.
Respir Res ; 15: 56, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24886221

RESUMO

INTRODUCTION: We investigated the effects of intravenous and intratracheal administration of salbutamol on lung morphology and function, expression of ion channels, aquaporin, and markers of inflammation, apoptosis, and alveolar epithelial/endothelial cell damage in experimental pulmonary (p) and extrapulmonary (exp) mild acute respiratory distress syndrome (ARDS). METHODS: In this prospective randomized controlled experimental study, 56 male Wistar rats were randomly assigned to mild ARDS induced by either intratracheal (n = 28, ARDSp) or intraperitoneal (n = 28, ARDSexp) administration of E. coli lipopolysaccharide. Four animals with no lung injury served as controls (NI). After 24 hours, animals were anesthetized, mechanically ventilated in pressure-controlled mode with low tidal volume (6 mL/kg), and randomly assigned to receive salbutamol (SALB) or saline 0.9% (CTRL), intravenously (i.v., 10 µg/kg/h) or intratracheally (bolus, 25 µg). Salbutamol doses were targeted at an increase of ≈ 20% in heart rate. Hemodynamics, lung mechanics, and arterial blood gases were measured before and after (at 30 and 60 min) salbutamol administration. At the end of the experiment, lungs were extracted for analysis of lung histology and molecular biology analysis. Values are expressed as mean ± standard deviation, and fold changes relative to NI, CTRL vs. SALB RESULTS: The gene expression of ion channels and aquaporin was increased in mild ARDSp, but not ARDSexp. In ARDSp, intravenous salbutamol resulted in higher gene expression of alveolar epithelial sodium channel (0.20 ± 0.07 vs. 0.68 ± 0.24, p < 0.001), aquaporin-1 (0.44 ± 0.09 vs. 0.96 ± 0.12, p < 0.001) aquaporin-3 (0.31 ± 0.12 vs. 0.93 ± 0.20, p < 0.001), and Na-K-ATPase-α (0.39 ± 0.08 vs. 0.92 ± 0.12, p < 0.001), whereas intratracheal salbutamol increased the gene expression of aquaporin-1 (0.46 ± 0.11 vs. 0.92 ± 0.06, p < 0.001) and Na-K-ATPase-α (0.32 ± 0.07 vs. 0.58 ± 0.15, p < 0.001). In ARDSexp, the gene expression of ion channels and aquaporin was not influenced by salbutamol. Morphological and functional variables and edema formation were not affected by salbutamol in any of the ARDS groups, regardless of the route of administration. CONCLUSION: Salbutamol administration increased the expression of alveolar epithelial ion channels and aquaporin in mild ARDSp, but not ARDSexp, with no effects on lung morphology and function or edema formation. These results may contribute to explain the negative effects of ß2-agonists on clinical outcome in ARDS.


Assuntos
Albuterol/administração & dosagem , Canais Iônicos/biossíntese , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Mucosa Respiratória/metabolismo , Administração Intravenosa , Animais , Injeções Espinhais , Masculino , Estudos Prospectivos , Distribuição Aleatória , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/etiologia , Mucosa Respiratória/efeitos dos fármacos , Resultado do Tratamento
8.
Respir Physiol Neurobiol ; 195: 27-36, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24548974

RESUMO

We analyzed the effects of pneumothorax duration and early or late drainage on lung histology and biological markers associated with inflammation, alveolar fluid clearance, and pulmonary oedema formation. Pneumothorax was induced by injecting air into the thorax of anaesthetized rats, which were randomized according to duration of pneumothorax [5 (PTX5) or 30 (PTX30)min] and further divided to be drained (D) or not (ND). ND rats were euthanized at 5 and 30min. In D groups, pneumothorax was drained and rats breathed spontaneously for 30min. PTX30-ND, compared to PTX5-ND, showed higher alveolar collapse and oedema, type III procollagen, caspase-3, epithelial sodium channel-α, and aquaporin (AQP)-1 mRNA expression, and epithelial and endothelial damage, with reduced cystic fibrosis transmembrane conductance regulator (CFTR) and AQP-3 expression. PTX5-D, compared to PTX30-D, showed less alveolar hyperinflation, oedema, and alveolar-capillary damage, with reduced interleukin-6, caspase-3, AQP-5, and Na,K-ATPase-α and -ß expression, and increased CFTR expression. In conclusion, longer duration pneumothorax exacerbated lung damage, oedema, and inflammation.


Assuntos
Drenagem , Pneumotórax/terapia , Edema Pulmonar/etiologia , Animais , Aquaporina 1/metabolismo , Aquaporina 3/metabolismo , Aquaporina 5/metabolismo , Caspase 3/metabolismo , Colágeno Tipo III/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endotélio/patologia , Interleucina-6/metabolismo , Masculino , Pneumotórax/complicações , Pneumotórax/imunologia , Pneumotórax/patologia , Alvéolos Pulmonares/patologia , Edema Pulmonar/imunologia , Edema Pulmonar/patologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Mucosa Respiratória/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
9.
Respir Physiol Neurobiol ; 187(2): 190-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548824

RESUMO

We compared the effects of bone marrow-derived mononuclear cells (BMMCs) and mesenchymal stromal cells (MSCs) on airway inflammation and remodeling and lung mechanics in experimental allergic asthma. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA group). A control group received saline using the same protocol. Twenty-four hours after the last challenge, groups were further randomized into subgroups to receive saline, BMMCs (2×10(6)) or MSCs (1×10(5)) intratracheally. BMMC and MSC administration decreased cell infiltration, bronchoconstriction index, alveolar collapse, collagen fiber content in the alveolar septa, and interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß and vascular endothelial growth factor (VEGF) levels compared to OVA-SAL. Lung function, alveolar collapse, collagen fiber deposition in alveolar septa, and levels of TGF-ß and VEGF improved more after BMMC than MSC therapy. In conclusion, intratracheal BMMC and MSC administration effectively modulated inflammation and fibrogenesis in an experimental model of asthma, but BMMCs was associated with greater benefit in terms of reducing levels of fibrogenesis-related growth factors.


Assuntos
Asma/patologia , Células da Medula Óssea/patologia , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise de Variância , Animais , Antígenos CD/metabolismo , Asma/induzido quimicamente , Asma/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
10.
Respir Physiol Neurobiol ; 185(3): 615-24, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23164835

RESUMO

We hypothesized that the route of administration would impact the beneficial effects of bone marrow-derived mononuclear cell (BMDMC) therapy on the remodelling process of asthma. C57BL/6 mice were randomly assigned to two main groups. In the OVA group, mice were sensitized and challenged with ovalbumin, while the control group received saline using the same protocol. Twenty-four hours before the first challenge, control and OVA animals were further randomized into three subgroups to receive saline (SAL), BMDMCs intravenously (2×10(6)), or BMDMCs intratracheally (2×10(6)). The following changes were induced by BMDMC therapy in OVA mice regardless of administration route: reduction in resistive and viscoelastic pressures, static elastance, eosinophil infiltration, collagen fibre content in airways and lung parenchyma; and reduction in the levels of interleukin (IL)-4, IL-13, transforming growth factor-ß and vascular endothelial growth factor. In conclusion, BMDMC modulated inflammatory and remodelling processes regardless of administration route in this experimental model of allergic asthma.


Assuntos
Asma/patologia , Asma/terapia , Transplante de Medula Óssea/métodos , Leucócitos Mononucleares/transplante , Administração Intravenosa , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão
11.
Intensive Care Med ; 38(3): 499-508, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22234736

RESUMO

PURPOSE: We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. METHODS: Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1ß, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. RESULTS: With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1ß, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. CONCLUSIONS: Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.


Assuntos
Lesão Pulmonar Aguda/imunologia , Hipertensão Intra-Abdominal/imunologia , Fibrose Pulmonar/etiologia , Volume de Ventilação Pulmonar/fisiologia , Lesão Pulmonar Aguda/patologia , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Colágeno Tipo III , Citocinas/imunologia , Escherichia coli , Infusões Parenterais , Hipertensão Intra-Abdominal/complicações , Intubação Intratraqueal , Lipopolissacarídeos/administração & dosagem , Respiração com Pressão Positiva/métodos , Distribuição Aleatória , Ratos , Ratos Wistar
12.
Respir Physiol Neurobiol ; 182(1): 26-36, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22266352

RESUMO

We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 × 10(6), CELL) intravenously 3h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-ß, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema.


Assuntos
Enfisema/terapia , Leucócitos Mononucleares/transplante , Pulmão/patologia , Doença Cardiopulmonar/prevenção & controle , Remodelação das Vias Aéreas , Análise de Variância , Animais , Células da Medula Óssea/citologia , Caspase 3/metabolismo , Ecocardiografia , Enfisema/induzido quimicamente , Enfisema/metabolismo , Enfisema/patologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Subpopulações de Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Elastase Pancreática , Distribuição Aleatória
13.
Respir Physiol Neurobiol ; 179(2-3): 129-36, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21801858

RESUMO

We analysed the effects of oleanolic acid (OA) on lung mechanics and histology and its possible mechanisms of action in experimental acute lung injury (ALI). BALB/c mice were randomly divided into Control (saline, ip) and ALI (paraquat, 25 mg/kg, ip) groups. At 1 h, both groups were treated with saline (SAL, 50 µl ip), OA (10 mg/kg ip), or dexamethasone (DEXA, 1 mg/kg ip). At 24 h, lung static elastance, viscoelastic pressure, and alveolar collapse reduced more after OA compared to DEXA administration. Tumour necrosis factor-α, macrophage migration inhibitory factor, interleukin-6, interferon-γ, and transforming growth factor-ß mRNA expressions in lung tissue diminished similarly after OA or DEXA. Conversely, only OA avoided reactive oxygen species generation and yielded a significant decrease in nitrite concentration. OA and DEXA restored the reduced glutathione/oxidized glutathione ratio and catalase activity while increasing glutathione peroxidase induced by paraquat. In conclusion, OA improved lung morphofunction by modulating the release of inflammatory mediators and oxidative stress.


Assuntos
Lesão Pulmonar Aguda/imunologia , Anti-Inflamatórios/farmacologia , Pulmão/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Quimiocinas/análise , Quimiocinas/biossíntese , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/imunologia , Mecânica Respiratória/imunologia
14.
Respir Physiol Neurobiol ; 178(2): 304-14, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21763473

RESUMO

We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1ß, vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-ß, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms.


Assuntos
Transplante de Medula Óssea , Leucócitos Mononucleares/transplante , Pulmão/cirurgia , Sepse/cirurgia , Animais , Transplante de Medula Óssea/métodos , Transplante de Células/métodos , Citocinas/biossíntese , Feminino , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sepse/metabolismo , Sepse/patologia , Fatores de Tempo
15.
Crit Care Med ; 39(5): 1074-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21263326

RESUMO

OBJECTIVE: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University research laboratory. SUBJECTS: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. INTERVENTIONS: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H2O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H2O. MEASUREMENTS AND MAIN RESULTS: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. CONCLUSIONS: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Pulmão/metabolismo , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/mortalidade , Animais , Caspase 3/análise , Caspase 3/metabolismo , Modelos Animais de Doenças , Interleucina-6/análise , Interleucina-6/metabolismo , Pulmão/fisiopatologia , Masculino , Microscopia Eletrônica de Transmissão , Pró-Colágeno , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Mecânica Respiratória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Sepse/complicações , Taxa de Sobrevida , Fatores de Tempo
16.
Respir Physiol Neurobiol ; 175(1): 153-63, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21050897

RESUMO

We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 × 106) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-ß, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Células da Medula Óssea/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Tecido Conjuntivo/fisiologia , Leucócitos Mononucleares/fisiologia , Hipersensibilidade Respiratória/terapia , Análise de Variância , Animais , Líquido da Lavagem Broncoalveolar , Doença Crônica , Tecido Conjuntivo/ultraestrutura , Modelos Animais de Doenças , Feminino , Injeções Intravenosas/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-5/metabolismo , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Ovalbumina/imunologia , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/patologia
17.
Crit Care Med ; 38(11): 2207-14, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20818231

RESUMO

OBJECTIVE: In acute lung injury, recruitment maneuvers have been used to open collapsed lungs and set positive end-expiratory pressure, but their effectiveness may depend on the degree of lung injury. This study uses a single experimental model with different degrees of lung injury and tests the hypothesis that recruitment maneuvers may have beneficial or deleterious effects depending on the severity of acute lung injury. We speculated that recruitment maneuvers may worsen lung mechanical stress in the presence of alveolar edema. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University research laboratory. SUBJECTS: Thirty-six Wistar rats randomly divided into three groups (n = 12 per group). INTERVENTIONS: In the control group, saline was intraperitoneally injected, whereas moderate and severe acute lung injury animals received paraquat intraperitoneally (20 mg/kg [moderate acute lung injury] and 25 mg/kg [severe acute lung injury]). After 24 hrs, animals were further randomized into subgroups (n = 6/each) to be recruited (recruitment maneuvers: 40 cm H2O continuous positive airway pressure for 40 secs) or not, followed by 1 hr of protective mechanical ventilation (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O). MEASUREMENTS AND MAIN RESULTS: Only severe acute lung injury caused alveolar edema. The amounts of alveolar collapse were similar in the acute lung injury groups. Static lung elastance, viscoelastic pressure, hyperinflation, lung, liver, and kidney cell apoptosis, and type 3 procollagen and interleukin-6 mRNA expressions in lung tissue were more elevated in severe acute lung injury than in moderate acute lung injury. After recruitment maneuvers, static lung elastance, viscoelastic pressure, and alveolar collapse were lower in moderate acute lung injury than in severe acute lung injury. Recruitment maneuvers reduced interleukin-6 expression with a minor detachment of the alveolar capillary membrane in moderate acute lung injury. In severe acute lung injury, recruitment maneuvers were associated with hyperinflation, increased apoptosis of lung and kidney, expression of type 3 procollagen, and worsened alveolar capillary injury. CONCLUSIONS: In the presence of alveolar edema, regional mechanical heterogeneities, and hyperinflation, recruitment maneuvers promoted a modest but consistent increase in inflammatory and fibrogenic response, which may have worsened lung function and potentiated alveolar and renal epithelial injury.


Assuntos
Lesão Pulmonar Aguda/terapia , Pressão Positiva Contínua nas Vias Aéreas , Atelectasia Pulmonar/etiologia , Edema Pulmonar/etiologia , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Colágeno Tipo III/biossíntese , Interleucina-6/biossíntese , Rim/patologia , Fígado/patologia , Pulmão/patologia , Microscopia Eletrônica de Transmissão , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Atelectasia Pulmonar/terapia , Edema Pulmonar/terapia , Ratos , Ratos Wistar , Respiração Artificial , Mecânica Respiratória/fisiologia
18.
Cell Physiol Biochem ; 26(2): 227-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20798506

RESUMO

BACKGROUND/AIMS: Mutations in the thyroid hormone receptor beta (TR-beta) gene result in resistance to thyroid hormone (RTH). Mutation Delta337T in the TR-beta gene has been shown to have the characteristics of RTH syndrome in mice. The aim of this work was to study the possible involvement of TR-beta receptor in thyroid modulation of ClC-2 in mouse kidney. METHODS: Expression of mouse (Delta337T and normal C57BL/6) renal RNA and protein expression were studied by reverse transcriptase-polymerase chain reaction and Western blot, respectively, in mice with hyper- or hypothyroidism. Renal function was studied by analysis of urinary electrolyte excretion. Studies of the ClC-2 promoter region were performed in immortalized renal proximal tubule (IRPT) cells. RESULTS: In RTH syndrome mice (Delta337T), renal dysfunction was found to be associated with changes in the fractional excretion of sodium (FE(Na)) and chloride (FE(Cl)). ClC-2 chloride channel mRNA and protein expression were found to be decreased by 40% in heterozygous and homozygous mutant mouse kidneys and high levels of plasma thyroid hormone were detected in both groups. Hypothyroidism induced by methimazole decreased the renal expression of ClC-2 in normal mice but not in Delta337T mutant mice. In in vitro studies performed on IRPT cells subjected to thyroid hormone treatment, the promoter region of the ClC-2 chloride channel was stimulated in a dose-dependent manner. CONCLUSIONS: This work emphasizes the importance of thyroid hormone in electrolyte handling along the nephron and suggests its participation in renal ClC-2 gene transcription via the TR-beta receptor pathway.


Assuntos
Canais de Cloreto/metabolismo , Rim/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Antitireóideos/farmacologia , Canais de Cloro CLC-2 , Canais de Cloreto/genética , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/metabolismo , Rim/fisiologia , Masculino , Metimazol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/sangue , Hormônios Tireóideos/farmacologia
19.
Crit Care ; 14(3): R114, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20546573

RESUMO

INTRODUCTION: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. METHODS: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP) approximately 70 mmHg; 2) normovolemia (MAP approximately 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximately 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H2O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est,L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. RESULTS: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est,L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. CONCLUSIONS: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo- and normovolemia.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Volume Sanguíneo , Sepse/complicações , Lesão Pulmonar Aguda/fisiopatologia , Animais , Apoptose/fisiologia , Brasil , Microscopia Eletrônica , Modelos Animais , Respiração com Pressão Positiva , Alvéolos Pulmonares/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Wistar , Respiração Artificial , Sepse/fisiopatologia , Resultado do Tratamento
20.
Crit Care Med ; 38(8): 1733-41, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562701

RESUMO

OBJECTIVE: To hypothesize that bone marrow-derived mononuclear cell (BMDMC) therapy might act differently on lung and distal organs in models of pulmonary or extrapulmonary acute lung injury with similar mechanical compromises. The pathophysiology of acute lung injury differs according to the type of primary insult. DESIGN: Prospective, randomized, controlled, experimental study. SETTING: University research laboratory. MEASUREMENTS AND MAIN RESULTS: In control animals, sterile saline solution was intratracheally (0.05 mL) or intraperitoneally (0.5 mL) injected. Acute lung injury animals received Escherichia coli lipopolysaccharide intratracheally (40 microg, ALIp) or intraperitoneally (400 microg, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALIexp animals were further randomized into subgroups receiving saline (0.05 mL) or BMDMC (2 x 10) intravenously. On day 7, BMDMC led to the following: 1) increase in survival rate; 2) reduction in static lung elastance, alveolar collapse, and bronchoalveolar lavage fluid cellularity (higher in ALIexp than ALIp); 3) decrease in collagen fiber content, cell apoptosis in lung, kidney, and liver, levels of interleukin-6, KC (murine interleukin-8 homolog), and interleukin-10 in bronchoalveolar lavage fluid, and messenger RNA expression of insulin-like growth factor, platelet-derived growth factor, and transforming growth factor-beta in both groups, as well as repair of basement membrane, epithelium and endothelium, regardless of acute lung injury etiology; 4) increase in vascular endothelial growth factor levels in bronchoalveolar lavage fluid and messenger RNA expression in lung tissue in both acute lung injury groups; and 5) increase in number of green fluorescent protein-positive cells in lung, kidney, and liver in ALIexp. CONCLUSIONS: BMDMC therapy was effective at modulating the inflammatory and fibrogenic processes in both acute lung injury models; however, survival and lung mechanics and histology improved more in ALIexp. These changes may be attributed to paracrine effects balancing pro- and anti-inflammatory cytokines and growth factors, because a small degree of pulmonary BMDMC engraftment was observed.


Assuntos
Lesão Pulmonar Aguda/terapia , Apoptose/fisiologia , Transplante de Medula Óssea/métodos , Citocinas/metabolismo , Mecânica Respiratória/fisiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/mortalidade , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Escherichia coli , Feminino , Leucócitos Mononucleares/transplante , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...