Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Catal ; 12(20): 12809-12822, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36313524

RESUMO

The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO2 catalysts (PdAcCeO2M), which yield unique Pd-Ce interfaces, where PdAcCeO2M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO2 (PdCeO2IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO2M can be attributed to the presence of a carbon-modified Pd0 and Ce4+/3+ surface arrangement, where distinct Pd-CO intermediate species and strong Pd-CeO2 interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CH x to CO, identified on PdAcCeO2M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd-CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm-1] species as key DRM intermediates, stemming from associative CO2 reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO2IW) where the competing reverse water gas shift reaction predominates.

2.
Angew Chem Int Ed Engl ; 61(39): e202208666, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35922389

RESUMO

In industrial catalysis, alkali cations are frequently used to promote activity or selectivity. Scanning tunneling microscopy, ambient-pressure X-ray photoelectron spectroscopy, and density-functional calculations were used to study the structure and reactivity of potassium oxides in contact with the Au(111) surface. Three different types of oxides (K2 O2 , K2 O and KOy with y<0.5) were observed on top of the gold substrate at 300-525 K. Initially, small aggregates of K2 O2 /K2 O (1-2 nm in size) were seen at the elbows of the herringbone structure. After increasing the K coverage (>0.15 ML), large islands of the oxide (20-40 nm in size) appeared. These islands contained a mixture of K2 O and KOy (y<0.5). A key correlation was found involving the structure, oxidation state, and chemical activity of the alkali oxide. The small aggregates of potassium oxide had a very high catalytic activity for the oxidation of CO, being much more than plain promoters.

3.
J Am Chem Soc ; 143(45): 19018-19032, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735767

RESUMO

Because of the abundance of natural gas in our planet, a major goal is to achieve a direct methane-to-methanol conversion at medium to low temperatures using mixtures of methane and oxygen. Here, we report an efficient catalyst, ZnO/Cu2O/Cu(111), for this process investigated using a combination of reactor testing, scanning tunneling microscopy, ambient-pressure X-ray photoemission spectroscopy, density functional calculations, and kinetic Monte Carlo simulations. The catalyst is capable of methane activation at room temperature and transforms mixtures of methane and oxygen to methanol at 450 K with a selectivity of ∼30%. This performance is not seen for other heterogeneous catalysts which usually require the addition of water to enable a significant conversion of methane to methanol. The unique coarse structure of the ZnO islands supported on a Cu2O/Cu(111) substrate provides a collection of multiple centers that display different catalytic activity during the reaction. ZnO-Cu2O step sites are active centers for methanol synthesis when exposed to CH4 and O2 due to an effective O-O bond dissociation, which enables a methane-to-methanol conversion with a reasonable selectivity. Upon addition of water, the defected O-rich ZnO sites, introduced by Zn vacancies, show superior behavior toward methane conversion and enhance the overall methanol selectivity to over 80%. Thus, in this case, the surface sites involved in a direct CH4 → CH3OH conversion are different from those engaged in methanol formation without water. The identification of the site-dependent behavior of ZnO/Cu2O/Cu(111) opens a design strategy for guiding efficient methane reformation with high methanol selectivity.

4.
Phys Chem Chem Phys ; 23(32): 17186-17196, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346423

RESUMO

To activate methane at low or medium temperatures is a difficult task and a pre-requisite for the conversion of this light alkane into high value chemicals. Herein, we report the preparation and characterizations of novel SnOx/Cu2O/Cu(111) interfaces that enable low-temperature methane activation. Scanning tunneling microscopy identified small, well-dispersed SnOx nanoclusters on the Cu2O/Cu(111) substrate with an average size of 8 Å, and such morphology was sustained up to 450 K in UHV annealing. Ambient pressure X-ray photoelectron spectroscopy showed that hydrocarbon species (CHx groups), the product of methane activation, were formed on SnOx/Cu2O/Cu(111) at a temperature as low as 300 K. An essential role of the SnOx-Cu2O interface was evinced by the SnOx coverage dependence. Systems with a small amount of tin oxide, 0.1-0.2 ML coverage, produced the highest concentration of adsorbed CHx groups. Calculations based on density functional theory showed a drastic reduction in the activation barrier for C-H bond cleavage when going from Cu2O/Cu(111) to SnOx/Cu2O/Cu(111). On the supported SnOx, the dissociation of methane was highly exothermic (ΔE∼-35 kcal mol-1) and the calculated barrier for activation (∼20 kcal mol-1) could be overcome at 300-500 K, target temperatures for the conversion of methane to high value chemicals.

5.
Front Pediatr ; 9: 622240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855003

RESUMO

The coronavirus disease 2019 (COVID-19) represents a health problem with multidimensional impacts and heterogeneous respiratory involvement in children, probably due to the interaction between different and complex mechanisms that could explain its variable degrees of severity. Although the majority of reports reveal that children develop less severe cases, the number of patients is increasing with more morbidity. Most serious respiratory manifestations are acute respiratory distress syndrome (ARDS) and pneumonia. By understanding the key aspects that can be used to differentiate between pediatric and adult respiratory compromise by COVID-19, we can improve our knowledge, and thus decrease the negative impact of the disease in the pediatric population. In this mini review, we summarize some of the mechanisms and findings that distinguish between adult and pediatric COVID-19 and respiratory involvement, taking into account some issues related to the physiopathology, diagnosis, clinical and paraclinical presentation, severity, treatment, and control of the disease.

6.
Science ; 368(6490): 513-517, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355028

RESUMO

Highly selective oxidation of methane to methanol has long been challenging in catalysis. Here, we reveal key steps for the pro-motion of this reaction by water when tuning the selectivity of a well-defined CeO2/Cu2O/Cu(111) catalyst from carbon monoxide and carbon dioxide to methanol under a reaction environment with methane, oxygen, and water. Ambient-pressure x-ray photoelectron spectroscopy showed that water added to methane and oxygen led to surface methoxy groups and accelerated methanol production. These results were consistent with density functional theory calculations and kinetic Monte Carlo simulations, which showed that water preferentially dissociates over the active cerium ions at the CeO2-Cu2O/Cu(111) interface. The adsorbed hydroxyl species blocked O-O bond cleavage that would dehydrogenate methoxy groups to carbon monoxide and carbon dioxide, and it directly converted this species to methanol, while oxygen reoxidized the reduced surface. Water adsorption also displaced the produced methanol into the gas phase.

7.
J Chem Phys ; 152(5): 054702, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035457

RESUMO

Indium oxide has received attention as an exciting candidate for catalyzing the CO2 hydrogenation to methanol due to its high selectivity (>80%). Compared to the extent of research on the activity of indium oxide-based powder catalysts, very little is known about the phenomena associated with the formation of surface alloys involving indium or the growth mechanism for indium oxide nanoparticles. In this report, scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS) were employed to elucidate the growth mode, structure, and chemical state of In/Au(111) alloys and InOx/Au(111) inverse model catalysts. Our study reveals distinct morphological differences between In/Au(111) and InOx/Au(111), and the InOx structure also depends strongly on the preparation conditions. In/Au surface alloy systems with extremely low coverage (0.02 ML) form islands preferentially on the elbow sites of reconstructed Au(111) herringbone, regardless of hexagonally closed packed and face centered cubic stacking. At higher coverage (0.1 ML), the In islands expand over the herringbone in the ⟨110⟩ direction and create two dimensional domain structures over the entire surfaces. Moreover, this 2D domain structure is disturbed by temperature with high dispersion of indium atoms observed during the annealing process. Oxidation of the In/Au(111) surface alloys with O2 at 550 K produces InOx/Au(111) systems which contain various sizes of InOx aggregates (from 0.7 nm to 10 nm). On the other hand, InOx/Au(111) surfaces prepared by vapor deposition of In at 550 K in an O2 background exhibit highly dispersed and uniformly small InOx particles (∼1 nm). Both InOx systems were confirmed to be partially oxidized by XPS.

8.
J Chem Phys ; 152(4): 044701, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007043

RESUMO

Cs is a promoter of Cu-based catalysts for the synthesis of alcohols from CO2 hydrogenation. Scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy were used to study the morphology and chemical properties of surfaces generated by the deposition of cesium on Cu2O/Cu(111) and Cu(111) substrates. CsOx nanostructures were formed after Cs metal was deposited on Cu2O/Cu(111) at 300 K. The formed CsOx protrude over the surface of copper oxide by 2-4 Å, with the dimension at the base of the nanostructures being in the range of 1-3 nm. Heating to elevated temperature induced significant changes in the size and dispersion of the CsOx nanostructures, and there was a clear reconstruction of the copper oxide substrate, which then exhibited long range order with a hexagonally packed structure. The as-deposited and annealed surfaces of CsOx/Cu2O/Cu(111) were more reactive toward CO2 than plain Cu2O/Cu(111) or clean Cu(111). However, none of them were stable in the presence of H2, which fully reduced the copper oxide at 400-450 K. In CsOx/Cu(111), the CsOx nanoclusters were dispersed all over the metallic copper in no particular order. The CsOx species had an average width of 2 nm and ∼1 Å height. The CsOx/Cu(111) systems exhibited the highest activity for the binding and dissociation of CO2, suggesting that the CsOx-copper interface plays a key role in alcohol synthesis.

9.
J Phys Chem B ; 122(2): 794-800, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28825484

RESUMO

The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO-copper interface in the generation of CO and the synthesis of methanol from CO2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θoxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO-copper interface. Furthermore, size and metal-oxide interactions affect the chemical and catalytic properties of the oxide making the supported nanoparticles different from bulk ZnO. The formation of a ZnO-copper interface favors the binding and conversion of CO2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500-600 K) used for the CO2 hydrogenation reaction. Reaction with CO2 oxidized the zinc, enhancing its stability over the copper substrates.

10.
Dalton Trans ; 46(37): 12516-12526, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28901358

RESUMO

Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H2O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H2O}n (1); [Cd2(H2O)2(e,a-cis-1,4-chdc)2(4,4'-dmb)2]n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H2O·CH3OH}n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH3OH}n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd2O2) as nodes to generate larger cycles made up of four dinuclear units, a Cd4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λem = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 µmol L-1.

11.
J Phys Chem A ; 120(37): 7311-9, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27579511

RESUMO

Rate coefficients k1-k3 have been measured for Cl atom reactions with CF2═CF2, CFCl═CFCl, and CCl2═CF2 relative to k4 for CF2═CF-CF═CF2 at 293 ± 2 K. k4 was remeasured relative to Cl + ethane. Cl was generated by UV photolysis of Cl2, and other species were monitored by FT-IR spectroscopy. The measurements yield k1 = (6.6 ± 1.0) × 10(-11), k2 = (6.5 ± 1.0) × 10(-11), and k3 = (7.1 ± 1.1) × 10(-11) cm(3) molecule(-1) s(-1), respectively, and k4 = (8.0 ± 1.2) × 10(-11) cm(3) molecule(-1) s(-1) is proposed. These results are discussed in the context of atmospheric chemistry. Subsequent chemistry in the presence of oxygen leads to oxygenated products that are identified via their IR spectra, and possible mechanisms are discussed. The yield of CF2O from C2F4 is 93 ± 7%. Dichlorofluoroacetyl fluoride (CCl2FCFO) was observed as a product from CFClCFCl, and chlorodifluoroacetyl chloride (CClF2CClO) was observed from CCl2CF2 oxidation. C4F6 led to 66 ± 5% CF2O and 38 ± 3% OCF2CFC(F)═O. Reaction enthalpies and enthalpy barriers computed via CBS-QB3 theory help rule out some unfavorable mechanistic steps.

12.
Inorg Chem ; 45(4): 1766-73, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16471992

RESUMO

We report the synthesis of new copper(I) complexes 6a-e from methyl 3-hydroxy-3-(p-R-phenyl)-2-propenedithioate ligands. These complexes were characterized by IR and 1H, 13C, and 31P NMR spectroscopy. The expected O,S-coordination mode was confirmed by the X-ray diffraction studies of 6b and 6e. The unexpected dimerization of 6b-e leads to the formation of four novel dinuclear copper(I) compounds (7b-e). The dinuclear complex structure was fully established by the X-ray diffraction analysis of 7a, in which the presence of a Cu-Cu interaction was observed.

13.
Inorg Chem ; 43(26): 8572-6, 2004 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-15606208

RESUMO

The paper describes the synthesis and structural characterization of four novel copper(I) complexes [CuL(PPh(3))(2)] (L = 3-hydroxy-3-(p-R-phenyl)-2-propenedithioate). In addition, a tautomeric equilibrium in solution was found and Hammett correlations with (13)C NMR parameters were studied. The structure of one complex was fully established by X-ray diffraction analysis.

14.
Acta méd. costarric ; 41(1): 19-22, mar. 1999. ilus
Artigo em Espanhol | LILACS | ID: lil-238190

RESUMO

Se describe un paciente de 43 años, costarricense, con tratamiento de una hernia discal por varios meses con esteroides, anti-infamatorios no esteroideos (AINES) y antihistaminicos (anti-H2), quien desarrolla un síndrome de hiperinfección por Strongyloides a nivel gástrico e intestinal, acompañándose de bacteremia por bacilos gram negativos y compromiso sistémico, resolviendo luego de terapia intensiva y multidisciplinaria.


Assuntos
Humanos , Masculino , Adulto , Bacteriemia/etiologia , Gastroenteropatias/etiologia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/tratamento farmacológico , Esteroides/administração & dosagem , Esteroides/uso terapêutico , Strongyloides stercoralis/microbiologia , Costa Rica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA