Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38630048

RESUMO

Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. While spinophilin is enriched in neurons, its roles in non-neuronal tissues, such as beta cells of the pancreatic islets, are unclear. We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. We have identified multiple putative spinophilin interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that normally act to mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high fat-fed (HFF) models of obesity. Additionally, we have found that spinophilin interacts with proteins from similar classes in isolated islets, suggesting a role for spinophilin in the pancreatic islet. Consistent with a pancreatic beta cell type-specific role for spinophilin, using our recently described conditional spinophilin knockout mice, we found that loss of spinophilin specifically in pancreatic beta cells improved glucose tolerance without impacting body weight in chow-fed mice. Our data further support a role for spinophilin in mediating pathophysiological changes in body weight and whole-body metabolism associated with obesity. Our data provide the first evidence that pancreatic spinophilin protein interactions are modulated by obesity and that loss of spinophilin specifically in pancreatic beta cells impacts whole-body glucose tolerance.

2.
Cell Rep ; 39(13): 111011, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767947

RESUMO

Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet ß cells. We hypothesize that inflammatory signaling within ß cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in ß cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of ß cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in ß cells exhibit an increase in a population of ß cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in ß cells promotes autoimmunity during type 1 diabetes progression.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Antígeno B7-H1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Feminino , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD
3.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34128835

RESUMO

Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of ß cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of ß cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved ß cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Receptores CXCR3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/imunologia , Masculino , Camundongos , Cultura Primária de Células , Receptores CXCR3/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Front Endocrinol (Lausanne) ; 12: 658439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108935

RESUMO

Offspring of obese mothers suffer higher risks of type 2 diabetes due to increased adiposity and decreased ß cell function. To date, the sex-differences in offspring islet insulin secretion during early life has not been evaluated extensively, particularly prior to weaning at postnatal day 21 (P21). To determine the role of maternal obesity on offspring islet insulin secretion, C57BL/6J female dams were fed chow or western diet from 4 weeks prior to mating to induce maternal obesity. First, offspring of chow-fed and obese dams were evaluated on postnatal day 21 (P21) prior to weaning for body composition, glucose and insulin tolerance, and islet phasic insulin-secretion. Compared to same-sex controls, both male and female P21 offspring born to obese dams (MatOb) had higher body adiposity and exhibited sex-specific differences in glucose tolerance and insulin secretion. The male MatOb offspring developed the highest extent of glucose intolerance and lowest glucose-induced insulin secretion. In contrast, P21 female offspring of obese dams had unimpaired insulin secretion. Using SAX-HPLC, we found that male MatOb had a decrease in pancreatic heparan sulfate glycosaminoglycan, which is a macromolecule critical for islet health. Notably, 8-weeks-old offspring of obese dams continued to exhibit a similar pattern of sex-differences in glucose intolerance and decreased islet insulin secretion. Overall, our study suggests that maternal obesity induces sex-specific changes to pancreatic HSG in offspring and a lasting effect on offspring insulin secretion, leading to the sex-differences in glucose intolerance.


Assuntos
Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade Materna/metabolismo , Pâncreas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adiposidade , Animais , Dieta Hiperlipídica , Feminino , Glucose , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Glicosaminoglicanos/efeitos adversos , Humanos , Secreção de Insulina , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores Sexuais
5.
Sci Signal ; 12(610)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796630

RESUMO

Deoxyhypusine synthase (DHPS) uses the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that enabled the inducible, postnatal deletion of Dhps specifically in postnatal islet ß cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces ß cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation and protein secretion, reduced production of the cell cycle molecule cyclin D2, impaired ß cell proliferation, and induced overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in ß cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idoso , Alelos , Animais , Proliferação de Células , Cruzamentos Genéticos , Ciclina D2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Feminino , Deleção de Genes , Homeostase , Humanos , Lisina/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ornitina Descarboxilase/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
6.
Sci Rep ; 9(1): 8449, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186447

RESUMO

The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate ß-cell function in vivo. Specifically, we developed ß-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo ß-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study ß-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of ß-cell physiology in the endogenous islet niche.


Assuntos
Células Endoteliais/ultraestrutura , Células Secretoras de Insulina/ultraestrutura , Microscopia Intravital/métodos , Ilhotas Pancreáticas/ultraestrutura , Animais , Técnicas Biossensoriais , Sinalização do Cálcio/genética , Sinalização do Cálcio/imunologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Camundongos
7.
Am J Physiol Endocrinol Metab ; 315(4): E650-E661, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894201

RESUMO

Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy. We hypothesized that biophysical properties provided through type I oligomeric collagen macroencapsulation are important considerations when designing strategies to improve islet survival, phenotype, and function. Mouse islets were encapsulated at various Oligomer concentrations (0.5 -3.0 mg/ml) or suspended in media and cultured for 14 days, after which viability, protein expression, and function were assessed. Oligomer-encapsulated islets showed a density-dependent improvement in in vitro viability, cytoarchitecture, and insulin secretion, with 3 mg/ml yielding values comparable to freshly isolated islets. For transplantation into streptozotocin-induced diabetic mice, 500 islets were mixed in Oligomer and injected subcutaneously, where rapid in situ macroencapsulation occurred, or injected with saline. Mice treated with Oligomer-encapsulated islets exhibited rapid (within 24 h) diabetes reversal and maintenance of normoglycemia for 14 (immunocompromised), 90 (syngeneic), and 40 days (allogeneic). Histological analysis showed Oligomer-islet engraftment with maintenance of islet cytoarchitecture, revascularization, and no foreign body response. Oligomer-islet macroencapsulation may provide a useful strategy for prolonging the health and function of cultured islets and has potential as a subcutaneous injectable islet transplantation strategy for treatment of T1D.


Assuntos
Colágeno Tipo I/uso terapêutico , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 1/cirurgia , Sobrevivência de Enxerto , Secreção de Insulina , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Sobrevivência de Tecidos , Animais , Colágeno Tipo I/ultraestrutura , Técnicas de Cultura , Derme/química , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Colágenos Fibrilares/uso terapêutico , Técnicas In Vitro , Ilhotas Pancreáticas/anatomia & histologia , Camundongos , Microscopia Confocal , Polimerização , Suínos
8.
FASEB J ; : fj201800150RR, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29812970

RESUMO

Loss of functional islet ß-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of ß-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of ß-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and ß-cell mass, death, and dedifferentiation. Compared with LFD controls, ß-cell mass increased during the feeding period in HFD animals, and statistically greater ß-cell death (unmethylated Ins2) was detectable at 2 and 6 wk after diet initiation. Those times correspond to periods when significant step increases in fasting glucose and glucose intolerance, respectively, were detected. ALDH1A3 and Foxo1 immunostaining of the pancreas revealed evidence of ß-cell dedifferentiation by 13 wk when fed an HFD, but not in LFD controls. In conclusion, early episodic ß-cell death may be a feature of cellular turnover correlated with changes in glycemia during ß-cell mass accrual in obesity, whereas ß-cell dedifferentiation may be a feature seen later in established disease.-Tersey, S. A., Levasseur, E. M., Syed, F., Farb, T. B., Orr, K. S., Nelson, J. B., Shaw, J. L., Bokvist, K., Mather, K. J., Mirmira, R. G. Episodic ß-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...