Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0252242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061881

RESUMO

The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.


Assuntos
Salinidade , Estações do Ano , Spinacia oleracea/metabolismo , Spinacia oleracea/microbiologia
2.
Sci Total Environ ; 717: 137207, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070896

RESUMO

Salinity is a major problem facing agriculture in arid and semiarid regions of the world. This problem may vary among seasons affecting both above- and belowground plant microbiomes. However, very few studies have been conducted to examine the influence of salinity and drought on microbiomes and on their functional relationships. The objective for the study was to examine the effects of salinity and drought on above- and belowground spinach microbiomes and evaluate seasonal changes in their bacterial community composition and diversity. Furthermore, potential consequences for community functioning were assessed based on 16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on results obtained with Piphillin. The experiment was repeated three times from early fall to late spring in sand tanks planted with spinach (Spinacia oleracea L., cv. Racoon) grown with saline water of different concentrations and provided at different amounts. Proteobacteria, Cyanobacteria, and Bacteroidetes accounted for 77.1% of taxa detected in the rhizosphere; Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil, while Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria accounted for 55.35% of taxa detected in the phyllosphere. Salinity significantly affected root microbiome beta-diversity according to weighted abundances (p = 0.032) but had no significant effect on the relative abundances of microbial taxa (p = 0.568). Pathways and functional genes analysis of soil, rhizosphere, and phyllosphere showed that the most abundant functional genes were mapped to membrane transport, DNA repair and recombination, signal transduction, purine metabolism, translation-related protein processing, oxidative phosphorylation, bacterial motility protein secretion, and membrane receptor proteins. Monoterpenoid biosynthesis was the most significantly enriched pathway in rhizosphere samples when compared to the soil samples. Overall, the predictive abundances indicate that, functionally, the rhizosphere bacteria had the highest gene abundances and that salinity and drought affected the above- and belowground microbiomes differently.


Assuntos
Microbiota , Spinacia oleracea , Secas , RNA Ribossômico 16S , Rizosfera , Salinidade , Microbiologia do Solo
3.
Physiol Mol Biol Plants ; 25(5): 1149-1161, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31564778

RESUMO

This study was planned to evaluate the role of exogenous application of sodium nitroprusside (SNP), a NO donor, on the deleterious effect of salinity in Capsicum annum L. seedlings. Different NO doses (0, 50, 100 and 150 µM SNP) were foliarly applied to pepper seedlings grown under the non-saline and saline conditions (50, 100 and 150 mM of NaCl). The photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), mineral element (Zn, Fe, B, K, Ca and Mg) uptake, plant growth and leaf relative water content (LRWC) were decreased by NaCl treatment, but NO treatments generally improved the observed parameters. 150 mM NaCl treatment caused overaccumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 87 and 100% respectively as compared to control. However, NO application (150 µM SNP) at 150 mM of NaCl significantly decreased H2O2 and MDA to 34 and 54%, respectively. The present study clarified that the exogenous NO treatment supported pepper seedlings against salinity stress by regulating the mineral nutrient uptake, antioxidant enzyme activity, osmolyte accumulation, and improving the LRWC and photosynthetic activity.

4.
Sci Total Environ ; 579: 1485-1495, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916300

RESUMO

Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature.


Assuntos
Secas , Monitoramento Ambiental , Rizosfera , Estações do Ano , Spinacia oleracea/fisiologia , Irrigação Agrícola , Clima Desértico , Salinidade , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...