Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Radiat Res ; 201(1): 7-18, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019093

RESUMO

Exposure to high-dose ionizing radiation can lead to life-threatening injuries and mortality. Bone marrow is the most sensitive organ to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) with the potential sequelae of infection, hemorrhage, anemia, and death if untreated. The development of medical countermeasures (MCMs) to protect or mitigate radiation injury is a medical necessity. In our well-established murine model of H-ARS we have demonstrated that the prostaglandin E2 (PGE2) analog 16,16 dimethyl-PGE2 (dmPGE2) has survival efficacy as both a radioprotectant and radiomitigator. The purpose of this study was to investigate the pharmacokinetics (PK) and biodistribution of dmPGE2 when used as a radioprotector in irradiated and non-irradiated inbred C57BL/6J mice, PK in irradiated and non-irradiated Jackson Diversity Outbred (JDO) mice, and the PK profile of dmPGE2 in non-irradiated non-human primates (NHPs). The C57BL/6J and JDO mice each received a single subcutaneous (SC) dose of 35 ug of dmPGE2 and were randomized to either receive radiation 30 min later or remain non-irradiated. Plasma and tissue PK profiles were established. The NHP were dosed with 0.1 mg/kg by SC administration and the PK profile in plasma was established. The concentration time profiles were analyzed by standard non-compartmental analysis and the metrics of AUC0-Inf, AUC60-480 (AUC from 60-480 min), Cmax, and t1/2 were evaluated. AUC60-480 represents the postirradiation time frame and was used to assess radiation effect. Overall, AUC0-Inf, Cmax, and t1/2 were numerically similar between strains (C57BL/6J and JDO) when combined, regardless of exposure status (AUC0-Inf: 112.50 ng·h/ml and 114.48 ng·h/ml, Cmax: 44.53 ng/ml and 63.96 ng/ml; t1/2: 1.8 h and 1.1 h, respectively). PK metrics were numerically lower in irradiated C57BL/6J mice than in non-irradiated mice [irradiation ratio: irradiated values/non-irradiated values = 0.71 for AUC60-480 (i.e., 29% lower), and 0.6 for t1/2]. In JDO mice, the radiation ratio was 0.53 for AUC60-480 (i.e., 47% lower), and 1.7 h for t1/2. The AUC0-Inf, Cmax, and t1/2 of the NHPs were 29.20 ng·h/ml, 7.68 ng/ml, and 3.26 h, respectively. Despite the numerical differences seen between irradiated and non-irradiated groups in PK parameters, the effect of radiation on PK can be considered minimal based on current data. The biodistribution in C57BL/6J mice showed that dmPGE2 per gram of tissue was highest in the lungs, regardless of exposure status. The radiation ratio for the different tissue AUC60-480 in C57BL/6J mice ranged between 0.5-1.1 (50% lower to 10% higher). Spleen, liver and bone marrow showed close to twice lower exposures after irradiation, whereas heart had a 10% higher exposure. Based on the clearance values from mice and NHP, the estimated allometric scaling coefficient was 0.81 (95% CI: 0.75, 0.86). While slightly higher than the current literature estimates of 0.75, this scaling coefficient can be considered a reasonable estimate and can be used to scale dmPGE2 dosing from animals to humans for future trials.


Assuntos
Síndrome Aguda da Radiação , Dinoprostona , Animais , Camundongos , Síndrome Aguda da Radiação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual
2.
Radiat Res ; 199(5): 468-489, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014943

RESUMO

Survivors of acute radiation exposure suffer from the delayed effects of acute radiation exposure (DEARE), a chronic condition affecting multiple organs, including lung, kidney, heart, gastrointestinal tract, eyes, and brain, and often causing cancer. While effective medical countermeasures (MCM) for the hematopoietic-acute radiation syndrome (H-ARS) have been identified and approved by the FDA, development of MCM for DEARE has not yet been successful. We previously documented residual bone marrow damage (RBMD) and progressive renal and cardiovascular DEARE in murine survivors of H-ARS, and significant survival efficacy of 16,16-dimethyl prostaglandin E2 (dmPGE2) given as a radioprotectant or radiomitigator for H-ARS. We now describe additional DEARE (physiological and neural function, progressive fur graying, ocular inflammation, and malignancy) developing after sub-threshold doses in our H-ARS model, and detailed analysis of the effects of dmPGE2 administered before (PGE-pre) or after (PGE-post) lethal total-body irradiation (TBI) on these DEARE. Administration of PGE-pre normalized the twofold reduction of white blood cells (WBC) and lymphocytes seen in vehicle-treated survivors (Veh), and increased the number of bone marrow (BM) cells, splenocytes, thymocytes, and phenotypically defined hematopoietic progenitor cells (HPC) and hematopoietic stem cells (HSC) to levels equivalent to those in non-irradiated age-matched controls. PGE-pre significantly protected HPC colony formation ex vivo by >twofold, long term-HSC in vivo engraftment potential up to ninefold, and significantly blunted TBI-induced myeloid skewing. Secondary transplantation documented continued production of LT-HSC with normal lineage differentiation. PGE-pre reduced development of DEARE cardiovascular pathologies and renal damage; prevented coronary artery rarefication, blunted progressive loss of coronary artery endothelia, reduced inflammation and coronary early senescence, and blunted radiation-induced increase in blood urea nitrogen (BUN). Ocular monocytes were significantly lower in PGE-pre mice, as was TBI-induced fur graying. Increased body weight and decreased frailty in male mice, and reduced incidence of thymic lymphoma were documented in PGE-pre mice. In assays measuring behavioral and cognitive functions, PGE-pre reduced anxiety in females, significantly blunted shock flinch response, and increased exploratory behavior in males. No effect of TBI was observed on memory in any group. PGE-post, despite significantly increasing 30-day survival in H-ARS and WBC and hematopoietic recovery, was not effective in reducing TBI-induced RBMD or any other DEARE. In summary, dmPGE2 administered as an H-ARS MCM before lethal TBI significantly increased 30-day survival and ameliorated RBMD and multi-organ and cognitive/behavioral DEARE to at least 12 months after TBI, whereas given after TBI, dmPGE2 enhances survival from H-ARS but has little impact on RBMD or other DEARE.


Assuntos
Síndrome Aguda da Radiação , Transplante de Células-Tronco Hematopoéticas , Feminino , Masculino , Animais , Camundongos , Dinoprostona/farmacologia , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/etiologia , Medula Óssea/efeitos da radiação , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Inflamação/patologia , Irradiação Corporal Total/efeitos adversos , Camundongos Endogâmicos C57BL
3.
Int J Radiat Biol ; 99(7): 1066-1079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862990

RESUMO

PURPOSE: Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS: Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.


Assuntos
Síndrome Aguda da Radiação , Contramedidas Médicas , Exposição à Radiação , Liberação Nociva de Radioativos , Animais , Humanos , Modelos Animais , Síndrome Aguda da Radiação/terapia
4.
Methods Mol Biol ; 2567: 127-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255699

RESUMO

Radiation exposure is particularly damaging to cells of the hematopoietic system, inducing pancytopenia and bone marrow failure. The study of these processes, as well as the development of treatments to prevent hematopoietic damage or enhance recovery after radiation exposure, often require analysis of bone marrow cells early after irradiation. While flow cytometry methods are well characterized for identification and analysis of bone marrow populations in the nonirradiated setting, multiple complications arise when dealing with irradiated tissues. Among these complications is a radiation-induced loss of c-Kit, a central marker for conventional gating of primitive hematopoietic populations in mice. These include hematopoietic stem cells (HSCs), which are central to blood reconstitution and life-long bone marrow function, and are important targets of analysis in these studies. This chapter outlines techniques for HSC identification and analysis from mouse bone marrow postirradiation.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Animais , Medula Óssea , Células da Medula Óssea , Transplante de Medula Óssea , Camundongos Endogâmicos C57BL
5.
Methods Mol Biol ; 2567: 251-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255706

RESUMO

The hematopoietic system is one of the most sensitive tissues to ionizing radiation, and radiation doses from 2 to 10 gray can result in death from bleeding and infection if left untreated. Reviewing the range of radiation doses reported in the literature that result in similar lethality highlights the need for a more consistent model that would allow a better comparison of the hematopoietic acute radiation syndrome (H-ARS) studies carried out in different laboratories. Developing a murine model of H-ARS to provide a platform suited for efficacy testing of medical countermeasures (MCM) against radiation should include a review of the Food and Drug Administration requirements outlined in the Animal Rule. The various aspects of a murine H-ARS model found to affect consistent performance will be described in this chapter including strain, sex, radiation type and dose, mouse restraint, and husbandry.


Assuntos
Síndrome Aguda da Radiação , Sistema Hematopoético , Camundongos , Animais , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/tratamento farmacológico , Modelos Animais de Doenças
6.
Life Sci Space Res (Amst) ; 35: 36-43, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336367

RESUMO

More than 50 years after the Apollo missions ended, the National Aeronautical and Space Administration (NASA) and other international space agencies are preparing a return to the moon as a step towards deep space exploration. At doses ranging from a fraction of a Gray (Gy) to a few Gy, crew will be at risk for developing bone marrow failure associated with the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) requiring pharmacological intervention to reduce risk to life and mission completion. Four medical countermeasures (MCM) in the colony stimulating factor class of drugs are now approved for treatment of myelosuppression associated with ARS. When taken in conjunction with antibiotics, fluids, antidiarrheals, antiemetics, antipyretics, and other treatments for symptomatic illness, the likelihood for recovery and mission completion can be greatly improved. The current review describes the performance and health risks of deep space flight, ionizing radiation exposure during crewed missions to the moon and Mars, and U.S. Food and Drug Administration (FDA)-approved medical interventions to treat ARS. With an expansion of human exploration missions beyond low Earth orbit (LEO), including near-term Lunar and future Mars missions, inclusion of MCMs to counteract ARS in the spaceflight kit will be critical for preserving crew health and performance.


Assuntos
Síndrome Aguda da Radiação , Contramedidas Médicas , Proteção Radiológica , Voo Espacial , Estados Unidos , Humanos , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , United States National Aeronautics and Space Administration
7.
Radiat Res ; 198(3): 221-242, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834823

RESUMO

The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.


Assuntos
Síndrome Aguda da Radiação , Animais , Modelos Animais de Doenças , Feminino , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Radiação
8.
Stem Cell Rev Rep ; 18(4): 1478-1494, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318613

RESUMO

Exposure to potentially lethal high-dose ionizing radiation results in bone marrow suppression, known as the hematopoietic acute radiation syndrome (H-ARS), which can lead to pancytopenia and possible death from hemorrhage or infection. Medical countermeasures to protect from or mitigate the effects of radiation exposure are an ongoing medical need. We recently reported that 16,16 dimethyl prostaglandin E2 (dmPGE2) given prior to lethal irradiation protects hematopoietic stem (HSCs) and progenitor (HPCs) cells and accelerates hematopoietic recovery by attenuating mitochondrial compromise, DNA damage, apoptosis, and senescence. However, molecular mechanisms responsible for the radioprotective effects of dmPGE2 on HSCs are not well understood. In this report, we identify a crucial role for the NAD+-dependent histone deacetylase Sirtuin 1 (Sirt1) downstream of PKA and CREB in dmPGE2-dependent radioprotection of hematopoietic cells. We found that dmPGE2 increases Sirt1 expression and activity in hematopoietic cells including HSCs and pharmacologic and genetic suppression of Sirt1 attenuates the radioprotective effects of dmPGE2 on HSC and HPC function and its ability to reduce DNA damage, apoptosis, and senescence and stimulate autophagy in HSCs. DmPGE2-mediated enhancement of Sirt1 activity in irradiated mice is accompanied by epigenetic downregulation of p53 activation and inhibition of H3K9 and H4K16 acetylation at the promoters of the genes involved in DNA repair, apoptosis, and autophagy, including p53, Ku70, Ku80, LC3b, ATG7, and NF-κB. These studies expand our understanding of intracellular events that are induced by IR but prevented/attenuated by dmPGE2 and suggest that modulation of Sirt1 activity may facilitate hematopoietic recovery following hematopoietic stress. Graphical Abstract.


Assuntos
Células-Tronco Hematopoéticas , Sirtuína 1 , Proteína Supressora de Tumor p53 , Animais , Apoptose/genética , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
9.
Curr Stem Cell Rep ; 8(3): 139-149, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36798890

RESUMO

Purpose of review: Malicious or accidental radiation exposure increases risk for the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust animal models reflective of all age groups and both sexes. This review details critical considerations in murine H-ARS and DEARE model development including divergent radiation responses dependent on age, sex, and genetic diversity. Recent findings: Radioresistance increases with murine age from pediatrics through geriatrics. Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble non-human primates in radiation response for modeling human diversity. Weanlings and JDO models exhibit less DEARE than other models. Summary: Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and DEARE provide powerful and essential tools in MCM development for all radiation victims.

11.
Front Pharmacol ; 12: 634477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079456

RESUMO

There is a need for countermeasures to mitigate lethal acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE). In WAG/RijCmcr rats, ARS occurs by 30-days following total body irradiation (TBI), and manifests as potentially lethal gastrointestinal (GI) and hematopoietic (H-ARS) toxicities after >12.5 and >7 Gy, respectively. DEARE, which includes potentially lethal lung and kidney injuries, is observed after partial body irradiation >12.5 Gy, with one hind limb shielded (leg-out PBI). The goal of this study is to enhance survival from ARS and DEARE by polypharmacy, since no monotherapy has demonstrated efficacy to mitigate both sets of injuries. For mitigation of ARS following 7.5 Gy TBI, a combination of three hematopoietic growth factors (polyethylene glycol (PEG) human granulocyte colony-stimulating factor (hG-CSF), PEG murine granulocyte-macrophage-CSF (mGM-CSF), and PEG human Interleukin (hIL)-11), which have shown survival efficacy in murine models of H-ARS were tested. This triple combination (TC) enhanced survival by 30-days from ∼25% to >60%. The TC was then combined with proven medical countermeasures for GI-ARS and DEARE, namely enrofloxacin, saline and the angiotensin converting enzyme inhibitor, lisinopril. This combination of ARS and DEARE mitigators improved survival from GI-ARS, H-ARS, and DEARE after 7.5 Gy TBI or 13 Gy PBI. Circulating blood cell recovery as well as lung and kidney function were also improved by TC + lisinopril. Taken together these results demonstrate an efficacious polypharmacy to mitigate radiation-induced ARS and DEARE in rats.

12.
Stem Cell Rev Rep ; 17(5): 1840-1854, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33974233

RESUMO

Aging of hematopoiesis is associated with increased frequency and clonality of hematopoietic stem cells (HSCs), along with functional compromise and myeloid bias, with donor age being a significant variable in survival after HSC transplantation. No clinical methods currently exist to enhance aged HSC function, and little is known regarding how aging affects molecular responses of HSCs to biological stimuli. Exposure of HSCs from young fish, mice, nonhuman primates, and humans to 16,16-dimethyl prostaglandin E2 (dmPGE2) enhances transplantation, but the effect of dmPGE2 on aged HSCs is unknown. Here we show that ex vivo pulse of bone marrow cells from young adult (3 mo) and aged (25 mo) mice with dmPGE2 prior to serial competitive transplantation significantly enhanced long-term repopulation from aged grafts in primary and secondary transplantation (27 % increase in chimerism) to a similar degree as young grafts (21 % increase in chimerism; both p < 0.05). RNA sequencing of phenotypically-isolated HSCs indicated that the molecular responses to dmPGE2 are similar in young and old, including CREB1 activation and increased cell survival and homeostasis. Common genes within these pathways identified likely key mediators of HSC enhancement by dmPGE2 and age-related signaling differences. HSC expression of the PGE2 receptor EP4, implicated in HSC function, increased with age in both mRNA and surface protein. This work suggests that aging does not alter the major dmPGE2 response pathways in HSCs which mediate enhancement of both young and old HSC function, with significant implications for expanding the therapeutic potential of elderly HSC transplantation.


Assuntos
Células-Tronco Hematopoéticas , Animais , Camundongos , Prostaglandinas , Prostaglandinas E , RNA Mensageiro
13.
Radiat Res ; 195(4): 307-323, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577641

RESUMO

Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Filgrastim/farmacologia , Sistema Hematopoético/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/fisiopatologia , Animais , Modelos Animais de Doenças , Sistema Hematopoético/fisiopatologia , Sistema Hematopoético/efeitos da radiação , Humanos , Camundongos , Pediatria , Tolerância a Radiação/efeitos da radiação , Irradiação Corporal Total/efeitos adversos
14.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393491

RESUMO

Bone marrow (BM) hematopoietic stem cells (HSCs) become dysfunctional during aging (i.e., they are increased in number but have an overall reduction in long-term repopulation potential and increased myeloid differentiation) compared with young HSCs, suggesting limited use of old donor BM cells for hematopoietic cell transplantation (HCT). BM cells reside in an in vivo hypoxic environment yet are evaluated after collection and processing in ambient air. We detected an increase in the number of both young and aged mouse BM HSCs collected and processed in 3% O2 compared with the number of young BM HSCs collected and processed in ambient air (~21% O2). Aged BM collected and processed under hypoxic conditions demonstrated enhanced engraftment capability during competitive transplantation analysis and contained more functional HSCs as determined by limiting dilution analysis. Importantly, the myeloid-to-lymphoid differentiation ratio of aged BM collected in 3% O2 was similar to that detected in young BM collected in ambient air or hypoxic conditions, consistent with the increased number of common lymphoid progenitors following collection under hypoxia. Enhanced functional activity and differentiation of old BM collected and processed in hypoxia correlated with reduced "stress" associated with ambient air BM collection and suggests that aged BM may be better and more efficiently used for HCT if collected and processed under hypoxia so that it is never exposed to ambient air O2.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Animais , Hipóxia Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
Radiat Res ; 195(2): 115-127, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33302300

RESUMO

Identification of medical countermeasures (MCM) to mitigate radiation damage and/or protect first responders is a compelling unmet medical need. The prostaglandin E2 (PGE2) analog, 16,16 dimethyl-PGE2 (dmPGE2), has shown efficacy as a radioprotectant and radiomitigator that can enhance hematopoiesis and ameliorate intestinal mucosal cell damage. In this study, we optimized the time of administration of dmPGE2 for protection and mitigation against mortality from the hematopoietic acute radiation syndrome (H-ARS) in young adult mice, evaluated its activity in pediatric and geriatric populations, and investigated potential mechanisms of action. Windows of 30-day survival efficacy for single administration of dmPGE2 were defined as within 3 h prior to and 6-30 h after total-body γ irradiation (TBI). Radioprotective and radio-mitigating efficacy was also observed in 2-year-old geriatric mice and 6-week-old pediatric mice. PGE2 receptor agonist studies suggest that signaling through EP4 is primarily responsible for the radioprotective effects. DmPGE2 administration prior to TBI attenuated the drop in red blood cells and platelets, accelerated recovery of all peripheral blood cell types, and resulted in higher hematopoietic and mesenchymal stem cells in survivor bone marrow. Multiplex analysis of bone marrow cytokines together with RNA sequencing of hematopoietic stem cells indicated a pro-hematopoiesis cytokine milieu induced by dmPGE2, with IL-6 and G-CSF strongly implicated in dmPGE2-mediated radioprotective activity. In summary, we have identified windows of administration for significant radio-mitigation and radioprotection by dmPGE2 in H-ARS, demonstrated survival efficacy in special populations, and gained insight into radioprotective mechanisms, information useful towards development of dmPGE2 as a MCM for first responders, military personnel, and civilians facing radiation threats.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Dinoprostona/farmacologia , Tolerância a Radiação/genética , Protetores contra Radiação/farmacologia , Síndrome Aguda da Radiação/genética , Síndrome Aguda da Radiação/patologia , Animais , Dinoprostona/análogos & derivados , Dinoprostona/genética , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Fator Estimulador de Colônias de Granulócitos/genética , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Interleucina-6/genética , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Análise de Sequência de RNA , Irradiação Corporal Total
16.
Stem Cell Rev Rep ; 16(6): 1020-1048, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33145673

RESUMO

There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.


Assuntos
Envelhecimento/fisiologia , Hematopoese/fisiologia , Animais , Epigênese Genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Microbiota , Espécies Reativas de Oxigênio/metabolismo
17.
Health Phys ; 119(5): 659-665, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868705

RESUMO

Murine hematopoietic-acute radiation syndrome (H-ARS) survivors of total body radiation (TBI) have a significant loss of heart vessel endothelial cells, along with increased tissue iron, as early as 4 mo post-TBI. The goal of the current study was to determine the possible role for excess tissue iron in the loss of coronary artery endothelial cells. Experiments used the H-ARS mouse model with gamma radiation exposure of 853 cGy (LD50/30) and time points from 1 to 12 wk post-TBI. Serum iron was elevated at 1 wk post-TBI, peaked at 2 wk post-TBI, and returned to non-irradiated control values by 4 wk post-TBI. A similar trend was seen for transferrin saturation, and both results correlated inversely with red blood cell number. Perls' Prussian Blue staining, used to detect iron deposition in heart tissue sections, showed myocardial iron was present as early as 2 wk following irradiation. Pretreatment of mice with the iron chelator deferiprone decreased tissue iron but not serum iron at 2 wk. Coronary artery endothelial cell density was significantly decreased as early as 2 wk vs. non-irradiated controls (P<0.05), and the reduced density persisted to 12 wk after irradiation. Deferiprone treatment of irradiated mice prevented the decrease in endothelial cell density at 2 and 4 wk post-TBI compared to irradiated, non-treated mice (P<0.03). Taken together, the results suggest excess tissue iron contributes to endothelial cell loss early following TBI and may be a significant event impacting the development of delayed effects of acute radiation exposure.


Assuntos
Síndrome Aguda da Radiação/complicações , Raios gama/efeitos adversos , Cardiopatias/etiologia , Sobrecarga de Ferro/complicações , Exposição à Radiação/efeitos adversos , Lesões Experimentais por Radiação/complicações , Animais , Feminino , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Irradiação Corporal Total
18.
Health Phys ; 119(5): 633-646, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932286

RESUMO

Development of medical countermeasures against radiation relies on robust animal models for efficacy testing. Mouse models have advantages over larger species due to economics, ease of conducting aging studies, existence of historical databases, and research tools allowing for sophisticated mechanistic studies. However, the radiation dose-response relationship of inbred strains is inherently steep and sensitive to experimental variables, and inbred models have been criticized for lacking genetic diversity. Jackson Diversity Outbred (JDO) mice are the most genetically diverse strain available, developed by the Collaborative Cross Consortium using eight founder strains, and may represent a more accurate model of humans than inbred strains. Herein, models of the Hematopoietic-Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure were developed in JDO mice and compared to inbred C57BL/6. The dose response relationship curve in JDO mice mirrored the more shallow curves of primates and humans, characteristic of genetic diversity. JDO mice were more radioresistant than C57BL/6 and differed in sensitivity to antibiotic countermeasures. The model was validated with pegylated-G-CSF, which provided significantly enhanced 30-d survival and accelerated blood recovery. Long-term JDO survivors exhibited increased recovery of blood cells and functional bone marrow hematopoietic progenitors compared to C57BL/6. While JDO hematopoietic stem cells declined more in number, they maintained a greater degree of quiescence compared to C57BL/6, which is essential for maintaining function. These JDO radiation models offer many of the advantages of small animals with the genetic diversity of large animals, providing an attractive alternative to currently available radiation animal models.


Assuntos
Síndrome Aguda da Radiação/patologia , Medula Óssea/patologia , Células-Tronco Hematopoéticas/patologia , Exposição à Radiação/efeitos adversos , Lesões Experimentais por Radiação/patologia , Síndrome Aguda da Radiação/etiologia , Animais , Medula Óssea/efeitos da radiação , Camundongos de Cruzamento Colaborativo , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Lesões Experimentais por Radiação/etiologia
19.
Health Phys ; 119(5): 647-658, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947490

RESUMO

Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.


Assuntos
Síndrome Aguda da Radiação/patologia , Sistema Hematopoético/imunologia , Reconstituição Imune , Exposição à Radiação/efeitos adversos , Lesões Experimentais por Radiação/patologia , Baço/imunologia , Timo/imunologia , Síndrome Aguda da Radiação/etiologia , Animais , Modelos Animais de Doenças , Feminino , Sistema Hematopoético/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Lesões Experimentais por Radiação/etiologia , Baço/efeitos da radiação , Timo/efeitos da radiação
20.
Stem Cell Reports ; 15(2): 358-373, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735825

RESUMO

Ionizing radiation exposure results in acute and delayed bone marrow suppression. Treatment of mice with 16,16-dimethyl prostaglandin E2 (dmPGE2) prior to lethal ionizing radiation (IR) facilitates survival, but the cellular and molecular mechanisms are unclear. In this study we show that dmPGE2 attenuates loss and enhances recovery of bone marrow cellularity, corresponding to a less severe hematopoietic stem cell nadir, and significantly preserves long-term repopulation capacity and progenitor cell function. Mechanistically, dmPGE2 suppressed hematopoietic stem cell (HSC) proliferation through 24 h post IR, which correlated with fewer DNA double-strand breaks and attenuation of apoptosis, mitochondrial compromise, oxidative stress, and senescence. RNA sequencing of HSCs at 1 h and 24 h post IR identified a predominant interference with IR-induced p53-downstream gene expression at 1 h, and confirmed the suppression of IR-induced cell-cycle genes at 24 h. These data identify mechanisms of dmPGE2 radioprotection and its potential role as a medical countermeasure against radiation exposure.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Radiação Ionizante , Protetores contra Radiação/farmacologia , Animais , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Redes Reguladoras de Genes/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...