Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Int ; 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36057101

RESUMO

This review aims to summarise new approaches in SARS-CoV-2-related research in cardiology. We provide a head-to-head comparison of models, such as animal research and human pluripotent stem cells, to investigate the pathomechanisms of COVID-19 and find an efficient therapy. In vivo methods were useful for studying systemic processes of the disease; however, due to differences in animal and human biology, the clinical translation of the results remains a complex task. In vitro stem cell research makes cellular events more observable and effective for finding new drugs and therapies for COVID-19, including the use of stem cells. Furthermore, multicellular 3D organoids even make it possible to observe the effects of drugs to treat SARS-CoV-2 infection in human organ models.

2.
Methods Mol Biol ; 2454: 163-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33755910

RESUMO

Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects. The adult human heart is however unable to instigate an effective repair mechanism and regenerate the myocardium in response to such damage. This is in large part due to the withdrawal of cardiomyocytes (CMs) from the cell cycle. Thus, identifying, screening, and developing agents that could enhance the proliferative capacity of CMs holds great potential in cardiac regeneration. Human induced pluripotent stem cells (hiPSCs) and their cardiovascular derivatives are excellent tools in the search for such agents. This chapter outlines state-of-the art techniques for the two-dimensional differentiation and attainment of hiPSC-derived CMs and endothelial cells (ECs). Bioreactor systems and three-dimensional spheroids derived from hiPSC-cardiovascular derivatives are explored as platforms for drug discovery before focusing on relevant assays that can be employed to assess cell proliferation and viability.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Endoteliais , Humanos , Miócitos Cardíacos , Tecnologia
3.
ESC Heart Fail ; 9(1): 224-235, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931757

RESUMO

AIMS: Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating apoptosis, cell proliferation, and stem cell self-renewal. Recently, the pathway has been shown to exert powerful growth regulatory activity in cardiomyocytes. However, the functional role of this stress-related and cell death-related pathway in the human heart and cardiomyocytes is not known. In this study, we investigated the role of the transcriptional co-activators of Hippo signalling, YAP and TAZ, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in response to cardiotoxic agents and investigated the effects of modulating the pathway on cardiomyocyte function and survival. METHODS AND RESULTS: RNA-sequencing analysis of human heart samples with doxorubicin-induced end-stage heart failure and healthy controls showed that YAP and ERBB2 (HER2) as upstream regulators of differentially expressed genes correlated with doxorubicin treatment. Thus, we tested the effects of doxorubicin on hiPSC-CMs in vitro. Using an automated high-content screen of 96 clinically relevant antineoplastic and cardiotherapeutic drugs, we showed that doxorubicin induced the highest activation of YAP/TAZ nuclear translocation in both hiPSC-CMs and control MCF7 breast cancer cells. The overexpression of YAP rescued doxorubicin-induced cell loss in hiPSC-CMs by inhibiting apoptosis and inducing proliferation. In contrast, silencing of YAP and TAZ by siRNAs resulted in elevated mitochondrial membrane potential loss in response to doxorubicin. hiPSC-CM calcium transients did not change in response to YAP/TAZ silencing. CONCLUSIONS: Our results suggest that Hippo signalling is involved in clinical anthracycline-induced cardiomyopathy. Modelling with hiPSC-CMs in vitro showed similar responses to doxorubicin as adult cardiomyocytes and revealed a potential cardioprotective effect of YAP in doxorubicin-induced cardiotoxicity.


Assuntos
Cardiomiopatias , Fatores de Transcrição , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Proteínas de Sinalização YAP
4.
Front Cell Dev Biol ; 9: 708715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631701

RESUMO

Gonadal steroid 17ß-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.

5.
Front Pharmacol ; 12: 603016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854431

RESUMO

The substantial progress of the human induced pluripotent stem cell (hiPSC) technologies over the last decade has provided us with new opportunities for cardiovascular drug discovery, regenerative medicine, and disease modeling. The combination of hiPSC with 3D culture techniques offers numerous advantages for generating and studying physiological and pathophysiological cardiac models. Cells grown in 3D can overcome many limitations of 2D cell cultures and animal models. Furthermore, it enables the investigation in an architecturally appropriate, complex cellular environment in vitro. Yet, generation and study of cardiac organoids-which may contain versatile cardiovascular cell types differentiated from hiPSC-remain a challenge. The large-scale and high-throughput applications require accurate and standardised models with highly automated processes in culturing, imaging and data collection. Besides the compound spatial structure of organoids, their biological processes also possess different temporal dynamics which require other methods and technologies to detect them. In this review, we summarise the possibilities and challenges of acquiring relevant information from 3D cardiovascular models. We focus on the opportunities during different time-scale processes in dynamic pharmacological experiments and discuss the putative steps toward one-size-fits-all assays.

6.
J Cereb Blood Flow Metab ; 40(1_suppl): S67-S80, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31987008

RESUMO

Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2+ signaling and to reduce the incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with the extracellular potassium homeostasis of the brain through sustaining [K+]e re-uptake mechanisms.


Assuntos
Isquemia Encefálica/fisiopatologia , Microglia/metabolismo , Potássio/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos
7.
Science ; 367(6477): 528-537, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31831638

RESUMO

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Junções Intercelulares/imunologia , Microglia/imunologia , Neurônios/imunologia , Receptores Purinérgicos P2Y12/fisiologia , Animais , Encéfalo/ultraestrutura , Lesões Encefálicas/patologia , Cálcio , Comunicação Celular/imunologia , Células HEK293 , Humanos , Camundongos , Mitocôndrias/imunologia , Canais de Potássio Shab/genética , Canais de Potássio Shab/fisiologia , Transdução de Sinais
8.
Neuroscience ; 405: 103-117, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29753862

RESUMO

Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research.


Assuntos
Comunicação Celular/fisiologia , Microglia/citologia , Neurônios/citologia , Animais , Encéfalo/citologia , Encefalopatias/patologia , Homeostase , Humanos , Microglia/patologia , Neurônios/patologia , Sinapses
9.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30027450

RESUMO

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Assuntos
Encéfalo/metabolismo , Infecções por Herpesviridae/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/virologia , Camundongos , Microglia/virologia , Neurônios/metabolismo , Neurônios/virologia
10.
Nat Commun ; 7: 11499, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27139776

RESUMO

Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation. We show that selective elimination of microglia leads to a striking, 60% increase in infarct size, which is reversed by microglial repopulation. Microglia-mediated protection includes reduction of excitotoxic injury, since an absence of microglia leads to dysregulated neuronal calcium responses, calcium overload and increased neuronal death. Furthermore, the incidence of spreading depolarization (SD) is markedly reduced in the absence of microglia. Thus, microglia are involved in changes in neuronal network activity and SD after brain injury in vivo that could have important implications for common brain diseases.


Assuntos
Lesões Encefálicas/fisiopatologia , Microglia/fisiologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Isquemia Encefálica/fisiopatologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Neuroproteção/fisiologia , Imagem com Lapso de Tempo/métodos
11.
Stem Cells Dev ; 22(20): 2777-93, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23734950

RESUMO

Retinoic acid (RA) is present at sites of neurogenesis in both the embryonic and adult brain. While it is widely accepted that RA signaling is involved in the regulation of neural stem cell differentiation, little is known about vitamin A utilization and biosynthesis of active retinoids in the neurogenic niches, or about the details of retinoid metabolism in neural stem cells and differentiating progenies. Here we provide data on retinoid responsiveness and RA production of distinct neural stem cell/neural progenitor populations. In addition, we demonstrate differentiation-related changes in the expression of genes encoding proteins of the retinoid machinery, including components responsible for uptake (Stra6) and storage (Lrat) of vitamin A, transport of retinoids (Rbp4, CrbpI, CrabpI-II), synthesis (Rdh10, Raldh1-4), degradation of RA (Cyp26a1-c1) and RA signaling (Rarα,ß,γ, Rxrα,ß,γ). We show that both early embryonic neuroectodermal (NE-4C) stem cells and late embryonic or adult derived radial glia like progenitors (RGl cells) are capable to produce bioactive retinoids but respond differently to retinoid signals. However, while neuronal differentiation of RGl cells can not be induced by RA, neuron formation by NE-4C cells is initiated by both RA and RA-precursors (retinol or retinyl acetate). The data indicate that endogenous RA production, at least in some neural stem cell populations, may result in autocrine regulation of neuronal differentiation.


Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Tretinoína/metabolismo , Vitamina A/metabolismo , Células-Tronco Adultas/citologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Diferenciação Celular , Linhagem da Célula/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/genética , Neuroglia/citologia , Neurônios/citologia , Cultura Primária de Células , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase , Proteínas Celulares de Ligação ao Retinol/genética , Proteínas Celulares de Ligação ao Retinol/metabolismo , Transdução de Sinais
12.
J Alzheimers Dis ; 36(3): 487-501, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23645098

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß peptides (Aß) as perivascular deposits and senile plaques in the brain. The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and reduced risk in AD in several epidemiological trials; however the exact underlying molecular mechanism remains to be elucidated. The aim of the study was to test whether DHA can exert a direct protective effect on the elements of the neurovascular unit, such as neurons, glial cells, brain endothelial cells, and pericytes, treated with Aß42 (15 µM). A dose-dependent high cellular toxicity was found in viability assays in all cell types and on acute hippocampal slices after treatment with Aß42 small oligomers prepared in situ from an isopeptide precursor. The cell morphology also changed dramatically in all cell types. In brain endothelial cells, damaged barrier function and increased para- and transcellular permeability were observed after peptide treatment. The production of reactive oxygen species was elevated in pericytes and endothelial and glial cells. DHA (30 µM) significantly decreased the Aß42-induced toxic effects in all cell types measured by viability assays, and protected the barrier integrity and functions of brain endothelial cells. DHA also decreased the elevated rhodamine 123 accumulation in brain endothelial cells pre-treated with Aß42 indicating an effect on efflux pump activity. These results indicate for the first time that DHA can protect not only neurons but also the other elements of the neurovascular unit from the toxic effects of Aß42 and this effect may be beneficial in AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Prosencéfalo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Prosencéfalo/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...