Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Swiss Med Wkly ; 154: 3503, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579316

RESUMO

INTRODUCTION: Influenza infections are challenging to monitor at the population level due to many mild and asymptomatic cases and similar symptoms to other common circulating respiratory diseases, including COVID-19. Methods for tracking cases outside of typical reporting infrastructure could improve monitoring of influenza transmission dynamics. Influenza shedding into wastewater represents a promising source of information where quantification is unbiased by testing or treatment-seeking behaviours. METHODS: We quantified influenza A and B virus loads from influent at Switzerland's three largest wastewater treatment plants, serving about 14% of the Swiss population (1.2 million individuals). We estimated trends in infection incidence and the effective reproductive number (Re) in these catchments during a 2021/22 epidemic and compared our estimates to typical influenza surveillance data. RESULTS: Wastewater data captured the same overall trends in infection incidence as laboratory-confirmed case data at the catchment level. However, the wastewater data were more sensitive in capturing a transient peak in incidence in December 2021 than the case data. The Re estimated from the wastewater data was roughly at or below the epidemic threshold of 1 during work-from-home measures in December 2021 but increased to at or above the epidemic threshold in two of the three catchments after the relaxation of these measures. The third catchment yielded qualitatively the same results but with wider confidence intervals. The confirmed case data at the catchment level yielded comparatively less precise R_e estimates before and during the work-from-home period, with confidence intervals that included one before and during the work-from-home period. DISCUSSION: Overall, we show that influenza RNA in wastewater can help monitor nationwide influenza transmission dynamics. Based on this research, we developed an online dashboard for ongoing wastewater-based influenza surveillance in Switzerland.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Suíça/epidemiologia , Águas Residuárias , RNA
2.
Water Res ; 254: 121390, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430760

RESUMO

Wastewater-based epidemiology (WBE) can provide objective and timely information on the use of new psychoactive substances (NPS), originally designed as legal alternatives of internationally controlled drugs. NPS have rapidly emerged on the global drug market, posing a challenge to drug policy and constituting a risk to public health. In this study, a WBE approach was applied to monitor the use of more than 300 NPS, together with fentanyl and its main metabolite norfentanyl, in influent wastewater collected from 12 European cities during March-June 2021. Quantitative and qualitative analysis of NPS in composite 24 h influent wastewater samples were based on solid phase extraction and liquid chromatography-mass spectrometry. In-sample stability tests demonstrated the suitability of most investigated biomarkers, except for a few synthetic opioids, synthetic cannabinoids and phenetylamines. Fentanyl, norfentanyl and eight NPS were quantified in influent wastewater and at least three substances were found in each city, demonstrating their use in Europe. N,N-dimethyltryptamine and 3-methylmethcathinone (3-MMC) were the most common NPS found, with the latter having the highest mass loads (up to 24.8 mg/day/1000 inhabitants). Seven additional substances, belonging to five categories of NPS, were identified in different cities. Spatial trends of NPS use were observed between cities and countries, and a changing weekly profile of use was observed for 3-MMC. WBE is a useful tool to rapidly evaluate emerging trends of NPS use, complementing common indicators (i.e. population surveys, seizures) and helping to establish measures for public health protection.


Assuntos
Psicotrópicos , Águas Residuárias , Psicotrópicos/análise , Europa (Continente) , Cidades , Fentanila/análise
3.
Water Res X ; 21: 100202, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098880

RESUMO

Combined sewer overflows (CSOs) are an important pathway of organic micropollutants from urban areas to open water bodies. Understanding the temporal dynamics of these micropollutants during overflow events is crucial for applying appropriate sampling methods and implementing effective management strategies. Yet, little is known about the dynamics of micropollutants in CSOs, because most studies report concentrations from single grab samples or event mean concentrations (EMCs). With unique high temporal resolution measurements (3 min), we show the real dynamics of polar organic micropollutants in CSOs of one small (2,700 people: P) and one large (159,000 P) urban catchment, for two micropollutant categories: (i) 33 micropollutants in municipal wastewater and (ii) 13 micropollutants from urban surface runoff. The concentration dynamics depend on the substance source and the catchment size. Indoor substances such as pharmaceuticals show high temporal dynamics with changes of 1 to 2 orders of magnitude within 9 min in the CSO of the small catchment. In contrast, outdoor substances at the small catchment and all substances at the large catchment display considerably lower variation. We tested various time-proportional sampling strategies to assess the range of error when estimating EMCs. We recommend an interval of 3 min to capture the dynamics of indoor substances in CSOs from small catchments. The results highlight that both future monitoring campaigns and the planning and management of urban wet-weather treatment systems will benefit from high temporal sampling resolutions, not only to understand dynamics but also to minimize errors of estimated EMCs.

4.
ACS ES T Water ; 2(11): 2194-2200, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36398130

RESUMO

Wastewater-based epidemiology (WBE) has emerged as an effective tool for monitoring SARS-CoV-2 dynamics during the COVID-19 pandemic. Here, we add a spatial component to WBE and use it to investigate SARS-CoV-2 spread in the canton of Ticino during the onset of the pandemic in Switzerland (end of February 2020 to beginning of March 2020). Ticino is located at the border to Northern Italy, where a large COVID-19 outbreak occurred in February 2020. Not surprisingly, Ticino was the site of the first clinically confirmed COVID-19 case in Switzerland. We retrospectively analyzed daily influent samples from nine wastewater treatment plants in Ticino that jointly cover an area of 20 km × 60 km and 351,000 people (>99% of the population). Our result is a fine-grained view of the spatiotemporal evolution of the COVID-19 pandemic in this canton. The wastewater analysis revealed that by February 29, 2020, SARS-CoV-2 had already spread to all catchments. At the same time, only four individual cases had been clinically confirmed across the region served by the treatment plants investigated. Our results demonstrate that WBE could serve as a versatile tool to monitor the introduction and spread of an infectious agent on a regional scale. To fully exploit its utility, WBE should be implemented in real time and become an integral part of future disease surveillance efforts.

5.
Water Res ; 223: 119020, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049245

RESUMO

Wastewater analysis of Δ9-tetrahydrocannabinol (THC) biomarkers can provide essential information on trends in cannabis consumption. Although analysis is mostly focused on the aqueous phase, previous studies have illustrated the need of improving the measurements of raw influent wastewater (IWW) considering also suspended solids. This is important for cannabis biomarkers, because a substantial part of them is expected to be found in the suspended solids due to their more lipophilic character compared with other metabolites/drugs included in these types of studies. However, it remains open to which extent trend estimates might be affected by solely analysing the liquid phase. To investigate this aspect, robust analytical methodologies are required to measure both the liquid and solid phases of IWW. In this work, we firstly tested liquid-liquid extraction (LLE) for THC and its major metabolites (THCOH, and THCCOOH). Using LLE, no filtration or centrifugation step was required for raw IWW analysis, and the three analytes were extracted from both the liquid and the solid phase simultaneously. In parallel, the raw IWW was centrifuged and the obtained solid and liquid phases were analyzed separately: the liquid phase by both LLE and solid phase extraction (SPE) for comparison of data, and the suspended solids by solid-liquid extraction (SLE). The separate analysis of both phases in a number of samples revealed that a significant amount of cannabis biomarkers (ranging from 42 to 90%) was found in the suspended solids. In addition, the total amount of cannabis biomarkers obtained by analysing raw IWW on the one hand, and by separate analysis of the liquid and the solid phases, on the other hand, was in good agreement. Data from this study show that the sole analysis of the liquid phase would lead to a notable underestimation of cannabis biomarkers concentrations in IWW.


Assuntos
Cannabis , Águas Residuárias , Biomarcadores , Cannabis/metabolismo , Dronabinol/análise , Dronabinol/metabolismo , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise
6.
Nat Microbiol ; 7(8): 1151-1160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851854

RESUMO

The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica , Humanos , SARS-CoV-2/genética , Águas Residuárias
7.
Environ Health Perspect ; 130(5): 57011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617001

RESUMO

BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias
8.
Euro Surveill ; 27(10)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35272748

RESUMO

BackgroundThroughout the COVID-19 pandemic, SARS-CoV-2 genetic variants of concern (VOCs) have repeatedly and independently arisen. VOCs are characterised by increased transmissibility, increased virulence or reduced neutralisation by antibodies obtained from prior infection or vaccination. Tracking the introduction and transmission of VOCs relies on sequencing, typically whole genome sequencing of clinical samples. Wastewater surveillance is increasingly used to track the introduction and spread of SARS-CoV-2 variants through sequencing approaches.AimHere, we adapt and apply a rapid, high-throughput method for detection and quantification of the relative frequency of two deletions characteristic of the Alpha, Beta, and Gamma VOCs in wastewater.MethodsWe developed drop-off RT-dPCR assays and an associated statistical approach implemented in the R package WWdPCR to analyse temporal dynamics of SARS-CoV-2 signature mutations (spike Δ69-70 and ORF1a Δ3675-3677) in wastewater and quantify transmission fitness advantage of the Alpha VOC.ResultsBased on analysis of Zurich wastewater samples, the estimated transmission fitness advantage of SARS-CoV-2 Alpha based on the spike Δ69-70 was 0.34 (95% confidence interval (CI): 0.30-0.39) and based on ORF1a Δ3675-3677 was 0.53 (95% CI: 0.49-0.57), aligning with the transmission fitness advantage of Alpha estimated by clinical sample sequencing in the surrounding canton of 0.49 (95% CI: 0.38-0.61).ConclusionDigital PCR assays targeting signature mutations in wastewater offer near real-time monitoring of SARS-CoV-2 VOCs and potentially earlier detection and inference on transmission fitness advantage than clinical sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Suíça/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Water Res ; 200: 117252, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048984

RESUMO

Wastewater-based epidemiology (WBE) has been shown to coincide with, or anticipate, confirmed COVID-19 case numbers. During periods with high test positivity rates, however, case numbers may be underreported, whereas wastewater does not suffer from this limitation. Here we investigated how the dynamics of new COVID-19 infections estimated based on wastewater monitoring or confirmed cases compare to true COVID-19 incidence dynamics. We focused on the first pandemic wave in Switzerland (February to April, 2020), when test positivity ranged up to 26%. SARS-CoV-2 RNA loads were determined 2-4 times per week in three Swiss wastewater treatment plants (Lugano, Lausanne and Zurich). Wastewater and case data were combined with a shedding load distribution and an infection-to-case confirmation delay distribution, respectively, to estimate infection incidence dynamics. Finally, the estimates were compared to reference incidence dynamics determined by a validated compartmental model. Incidence dynamics estimated based on wastewater data were found to better track the timing and shape of the reference infection peak compared to estimates based on confirmed cases. In contrast, case confirmations provided a better estimate of the subsequent decline in infections. Under a regime of high-test positivity rates, WBE thus provides critical information that is complementary to clinical data to monitor the pandemic trajectory.


Assuntos
COVID-19 , Águas Residuárias , Humanos , Incidência , RNA Viral , SARS-CoV-2 , Suíça/epidemiologia
10.
Environ Sci Technol ; 54(11): 6584-6593, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32223223

RESUMO

Untreated sewer overflows can contaminate receiving waters with micropollutants. Although concentrations of discharged micropollutants can be ecotoxicologically relevant, only limited data is available to assess occurrence and spatial differences among sewer overflow catchments. Therefore, we present an innovative type of data obtained with passive samplers at 20 combined sewer overflow sites (2-7 events per site; 95 events in total). The data sheds light on concentration ranges for 13 representative polar organic micropollutants and shows that micropollutants in both municipal wastewater and stormwater can be relevant sources of contaminants. We identify indicator micropollutants for further studies: benzotriazole (80% interquantile of time-weighted average concentration: 250-4800 ng/L), carbamazepine (33-910 ng/L), diclofenac (78-1000 ng/L), carbendazim (21-900 ng/L), diazinon (2.1-53 ng/L), diuron (22-1100 ng/L), mecoprop (98-5300 ng/L), metolachlor (6-230 ng/L), and terbutryn (29-810 ng/L). These concentration estimates are assumed to be on the safe side for comparison with environmental quality standards (EQS). A majority of sewer overflow sites (13 of 20) show discharge concentrations above acute EQS for at least one micropollutant and thus would have to rely on dilution by receiving waters to not exceed any EQS. The intersite variability among sewer overflows exceed the within-site variability. Hence, future monitoring studies should cover more sewer overflow sites. No correlation could be found with event durations, specific storage volume or land use data, thus showing the complexity of micropollutant occurrence and indicating that other factors led to the observed high spatial variability. In conclusion, our results clearly show the potential relevance of micropollutants in sewer overflows and the need to assess site-specific measures.


Assuntos
Poluentes Químicos da Água , Monitoramento Ambiental , Esgotos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 53(15): 8488-8498, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31291095

RESUMO

Ubiquitous sensing will create many opportunities and threats for urban water management, which are only poorly understood today. To identify the most relevant trends, we conducted a horizon scan regarding how ubiquitous sensing will shape the future of urban drainage and wastewater management. Our survey of the international urban water community received an active response from both the academics and the professionals from the water industry. The analysis of the responses demonstrates that emerging topics for urban water will often involve experts from different communities, including aquatic ecologists, urban water system engineers and managers, as well as information and communications technology professionals and computer scientists. Activities in topics that are identified as novel will either require (i) cross-disciplinary training, such as importing new developments from the IT sector, or (ii) research in new areas for urban water specialists, for example, to help solve open questions in aquatic ecology. These results are, therefore, a call for interdisciplinary research beyond our own discipline. They also demonstrate that the water management community is not yet prepared for the digital transformation, where we will experience a data demand, i.e. a "pull" of urban water data into external services. The results suggest that a lot remains to be done to harvest the upcoming opportunities. Horizon scanning should be repeated on a routine basis, under the umbrella of an experienced polling organization.


Assuntos
Indústrias , Águas Residuárias , Armazenamento e Recuperação da Informação
12.
Environ Sci Technol ; 53(17): 10303-10311, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31359751

RESUMO

Wastewater studies that provide per capita estimates of consumption (influent) or release (effluent) via wastewater systems rely heavily on accurate population data. This study evaluated the accuracy of Wastewater Treatment Plant (WWTP) reported populations, as well as hydrochemical parameters, against accurate populations from a population census. 104 catchment maps were received from WWTPs, geolocated in geospatial software and overlaid with the smallest area unit of the Australian census, equating to 14.9 million Australians or 64% of the national population. We characterized each catchment for population counts, as well as by age profile, income profile, and education level. For a subset of sites, population estimates using hydrochemical parameters BOD, COD, and dissolved ammonia were evaluated for accuracy against census populations. Population estimates provided by WWTP personnel were on average 18% higher than census-based populations. Furthermore, hydrochemical-based population estimates had high RSD (>44%) for BOD, COD, and ammonium between sites, suggesting that their applicability for use in population estimation may not be appropriate for every WWTP. Catchment age distributions were evaluated and 46% of catchments had skewed age distributions: 6% were skewed older, and 40% were skewed younger. Through this process WWTP catchment populations can be characterized in a way that will enhance the interpretations of per capita estimates.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Austrália , Censos , Monitoramento Ambiental , Eliminação de Resíduos Líquidos
13.
Water Res ; 160: 350-360, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158617

RESUMO

Contaminants in sewer overflows can contribute to exceedances of environmental quality standards, thus the quantification of contaminants during rainfall events is of relevance. However, monitoring is challenged by i) high spatiotemporal variability of contaminants in events of hard-to-predict durations, and ii) a large number of remote sites, which would imply enormous efforts with traditional sampling equipment. Therefore, we evaluate the applicability of passive samplers (Empore styrene-divinylbenzene reverse phase sulfonated (SDB-RPS)) to monitor a set of 13 polar organic contaminants. We present calibration experiments at high temporal resolution to assess the rate limiting accumulation mechanisms for short events (<36 h), report parameters for typical sewer conditions and compare passive samplers with composite water samples in a field study (three locations, total 10 events). With sampling rates of 0.35-3.5 L/d for 1 h reference time, our calibration results indicate a high sensitivity of passive samplers to sample short, highly variable sewer overflows. The contaminant uptake kinetic shows a fast initial accumulation, which is not well represented with the typical first-order model. Our results indicate that mass transfer to passive samplers is either controlled by the water boundary layer and the sorbent, or by the sorbent alone. Overall, passive sampler concentration estimates are within a factor 0.4 to 3.1 in comparison to composite water samples in the field study. We conclude that passive samplers are a promising approach to monitor a large number of discharge sites although it cannot replace traditional stormwater quality sampling in some cases (e.g. exact load estimates, high temporal resolution). Passive samplers facilitate identifying and prioritizing locations that may require more detailed investigations.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Poluição Ambiental , Cinética , Água
14.
Water Res ; 151: 447-455, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641462

RESUMO

Transformation of biomarkers (or their stability) during sewer transport is an important issue for wastewater-based epidemiology (WBE). Most studies so far have been conducted in the laboratory, which usually employed unrealistic conditions. In the present study, we utilized a pilot sewer system including a gravity pipe and a rising main pipe to investigate the fate of 24 pharmaceutical biomarkers. A programmable logic controller was used to control and monitor the system including sewer operational conditions and wastewater properties. Sequential samples were collected that can represent hydraulic retention time (HRT) of up to 8 h in a rising main and 4 h in a gravity sewer. Wastewater parameters and biomarker concentrations were analysed to evaluate the stability and transformation kinetics. The wastewater parameters of the pilot system were close to the conditions of real sewers. The findings of biomarker transformation were also close to real sewer data with seventeen biomarkers reported as stable while buprenorphine, caffeine, ethyl-sulfate, methadone, paracetamol, paraxanthine and salicylic acid degraded to variable extents. Both zero-order and first-order kinetics were used to model the degradation of unstable biomarkers and interestingly the goodness of fit R2 for the zero-order model was higher than the first-order model for all unstable biomarkers in the rising main. The pilot sewer system simulates more realistic conditions than benchtop laboratory setups and may provide a more accurate approach for assessing the in-sewer transformation kinetics and stability of biomarkers.


Assuntos
Esgotos , Poluentes Químicos da Água , Biomarcadores , Águas Residuárias
15.
J Hazard Mater ; 361: 312-320, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30241059

RESUMO

Considerable pollutant loads can enter surface waters during rain events. Three factors challenge quantification of these pollutant fluxes using traditional sampling methods: (i) concentration fluctuations; (ii) unknown event duration; and (iii) placement, operation, and maintenance of equipment. Passive samplers offer the advantage of sampling in a continuous mode without power supply. However, variable uptake rates due to environmental factors and desorption in the case of fluctuating concentrations can affect the accuracy of time-weighted average (TWA) concentration estimates. While uncertainties related to environmental factors could be accounted for with additional effort, we can neither control nor quantify the concentration variability. We present measured and modelled concentration profiles at high temporal resolution and provide a systematic approach to assessing deviations from true TWA concentration due to fluctuating concentration profiles. We evaluate sampling of sewer overflows (0.3-14 h) with Chemcatcher and 1-week sampling in rivers. The uncertainty due to fluctuating concentrations is small, and other factors such as chemical analyses and sampler calibration have a similar or higher impact. The uncertainty due to fluctuations clearly increases with the sampling duration, particularly when exceeding the half-life of equilibrium. We conclude that passive sampling can also be used in wastewater systems with potentially high concentration variations.

16.
Environ Int ; 122: 400-411, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30554870

RESUMO

Wastewater contains a large range of biological and chemical markers of human activity and exposures. Through systematic collection and analysis of these markers within wastewater samples it is possible to measure the public health of whole populations. The analysis of effluent and biosolids can also be used to understand the release of chemicals from wastewater treatment plants into the environment. Wastewater analysis and comparison with catchment specific data (e.g. demographics) however remains largely unexplored. This manuscript describes a national wastewater monitoring study that combines influent, effluent and biosolids sampling with the Australian Census. An archiving program allows estimation of per capita exposure to and consumption of chemicals, public health information, as well as per capita release of chemicals into the environment. The paper discusses the study concept, critical steps in setting up a coordinated national approach and key logistical and other considerations with a focus on lessons learnt and future applications. The unique combination of archived samples, analytical data and associated census-derived population data will provide a baseline dataset that has wide and potentially increasing applications across many disciplines that include public health, epidemiology, criminology, toxicology and sociology.


Assuntos
Monitoramento Ambiental , Saúde Pública , Águas Residuárias/química , Poluentes Químicos da Água/análise , Austrália , Censos , Humanos
17.
Handb Exp Pharmacol ; 252: 543-566, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896656

RESUMO

Wastewater-based epidemiology (WBE) complements existing epidemiology-based estimation techniques and provides objective, evidence-based estimates of illicit drug use. After consumption, biomarkers - drugs and their metabolites - excreted to toilets and flushed into urban sewer networks can be measured in raw wastewater samples. The quantified loads can serve as an estimate for the collective consumption of all people contributing to the wastewater sample. This transdisciplinary approach, further explained in this chapter, has developed, matured and is now established for monitoring substances such as cocaine and amphetamine-type stimulants. Research currently underway is refining WBE to new applications including new psychoactive substances (NPS).


Assuntos
Drogas Ilícitas/análise , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Anfetamina/análise , Estimulantes do Sistema Nervoso Central/análise , Cocaína/análise , Humanos
18.
Sci Total Environ ; 634: 331-340, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627557

RESUMO

Recent studies have demonstrated the role of biofilms on the stability of drug residues in wastewater. These factors are pertinent in wastewater-based epidemiology (WBE) when estimating community-level drug use. However, there is scarce information on the biotransformation of drug residues in the presence of biofilms and the potential use of transformation products (TPs) as biomarkers in WBE. The purpose of this work was to investigate the formation of TPs in sewage reactors in the presence of biofilm mimicking conditions during in-sewer transport. Synthetic cathinones (methylenedioxypyrovalerone, methylone, mephedrone) and phenethylamines (4-methoxy-methamphetamine and 4-methoxyamphetamine) were incubated in individual reactors over a 24h period. Analysis of parent species and TPs was carried out using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToFMS). Identification of TPs was done using suspect and non-target workflows. In total, 18 TPs were detected and identified with reduction of ß-keto group, demethylenation, demethylation, and hydroxylation reactions observed for the synthetic cathinones. For the phenethylamines, N- and O-demethylation reactions were identified. Overall, the experiments showed varying stability for the parent species in wastewater in the presence of biofilms. The newly identified isomeric forms of TPs particularly for methylone and mephedrone can be used as potential target biomarkers for WBE studies due to their specificity and detectability within a 24h residence time.

19.
Water Res ; 132: 99-110, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310032

RESUMO

The aim of this study was to understand the uncertainty of estimating loads for observed herbicides and nutrients during a flood event and provide guidance on estimator selection. A high-resolution grab sampling campaign (258 samples over 100 h) was conducted during a flood event in a tropical waterway in Queensland, Australia. Ten herbicides and three nutrient compounds were detected at elevated concentrations. Each had a unique chemograph with differences in transport processes (e.g. dependence on flow, dilution processes and timing of concentration pulses). Resampling from the data set was used to assess uncertainty. Bias existed at lower sampling efforts but depended on estimator properties as sampling effort increased: the interpolation, ratio and regression estimators became unbiased. Large differences were observed in precision and the importance of sampling effort and estimator selection depended on the relationship between the chemograph and hydrograph. The variety of transport processes observed and the resultant variability in uncertainty suggest that useful load estimates can only be obtained with sufficient samples and appropriate estimator selection. We provide a rationale to show the latter can be guided across sampling periods by selecting an estimator where the sampling regime or the relationship between the chemograph and hydrograph meet its assumptions: interpolation becomes more correct as sampling effort increases and the ratio becomes more correct as the r2 correlation between flux and flow increases (e.g. > 0.9); a stratified composite sampling approach, even with random samples, is a promising alternative.


Assuntos
Inundações , Poluentes Químicos da Água/análise , Compostos de Amônio/análise , Monitoramento Ambiental , Herbicidas/análise , Óxidos de Nitrogênio/análise , Fósforo/análise , Queensland , Incerteza
20.
Mass Spectrom Rev ; 37(3): 258-280, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-27750373

RESUMO

The analysis of illicit drugs in urban wastewater is the basis of wastewater-based epidemiology (WBE), and has received much scientific attention because the concentrations measured can be used as a new non-intrusive tool to provide evidence-based and real-time estimates of community-wide drug consumption. Moreover, WBE allows monitoring patterns and spatial and temporal trends of drug use. Although information and expertise from other disciplines is required to refine and effectively apply WBE, analytical chemistry is the fundamental driver in this field. The use of advanced analytical techniques, commonly based on combined chromatography-mass spectrometry, is mandatory because the very low analyte concentration and the complexity of samples (raw wastewater) make quantification and identification/confirmation of illicit drug biomarkers (IDBs) troublesome. We review the most-recent literature available (mostly from the last 5 years) on the determination of IDBs in wastewater with particular emphasis on the different analytical strategies applied. The predominance of liquid chromatography coupled to tandem mass spectrometry to quantify target IDBs and the essence to produce reliable and comparable results is illustrated. Accordingly, the importance to perform inter-laboratory exercises and the need to analyze appropriate quality controls in each sample sequence is highlighted. Other crucial steps in WBE, such as sample collection and sample pre-treatment, are briefly and carefully discussed. The article further focuses on the potential of high-resolution mass spectrometry. Different approaches for target and non-target analysis are discussed, and the interest to perform experiments under laboratory-controlled conditions, as a complementary tool to investigate related compounds (e.g., minor metabolites and/or transformation products in wastewater) is treated. The article ends up with the trends and future perspectives in this field from the authors' point of view. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:258-280, 2018.


Assuntos
Biomarcadores/análise , Drogas Ilícitas/análise , Espectrometria de Massas/métodos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Drogas Ilícitas/metabolismo , Limite de Detecção , Controle de Qualidade , Manejo de Espécimes , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...