Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Cell ; 114(9): 237-253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35851960

RESUMO

Ezrin protein is involved in the interaction of actin cytoskeleton with membrane receptors such as CD44. It regulates plasma membrane dynamics and intracellular signaling. Coxiella burnetii, the etiologic agent of Q fever, is internalized into host cell through a poorly characterized molecular mechanism. Here we analyzed the role of ezrin and CD44 in the C. burnetii internalization by HeLa cells. The knockdown of ezrin and CD44 inhibited the bacterial uptake. Interestingly, at early stages of C. burnetii internalization, ezrin was recruited to the cell membrane fraction and phosphorylated. Moreover, the overexpression of non-phosphorylatable and phosphomimetic ezrin mutants decreased and increased the bacterial entry, respectively. A decrease in the internalization of C. burnetii was observed by the overexpression of CD44 truncated forms containing the intracellular or the extracellular domains. Interestingly, the CD44 mutant was unable to interact with ERM proteins decreased the bacterial internalization. These findings demonstrate the participation of ezrin in the internalization process of C. burnetii in non-phagocytic cells. Additionally, we present evidence that CD44 receptor would be involved in that process.


Assuntos
Coxiella burnetii , Proteínas do Citoesqueleto/metabolismo , Receptores de Hialuronatos/metabolismo , Citoesqueleto de Actina , Coxiella burnetii/metabolismo , Células HeLa , Humanos
2.
PLoS One ; 14(1): e0209820, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640917

RESUMO

Microtubules (Mts) are dynamic cytoskeleton structures that play a key role in vesicular transport. The Mts-mediated transport depends on motor proteins named kinesins and the dynein/dynactin motor complex. The Rab7 adapter protein FYCO1 controls the anterograde transport of the endocytic compartments through the interaction with the kinesin KIF5. Rab7 and its partner RILP induce the recruitment of dynein/dynactin to late endosomes regulating its retrograde transport to the perinuclear area to fuse with lysosomes. The late endosomal-lysosomal fusion is regulated by the HOPS complex through its interaction with RILP and the GTPase Arl8. Coxiella burnetii (Cb), the causative agent of Q fever, is an obligate intracellular pathogen, which generates a large compartment with autophagolysosomal characteristics named Cb-containing vacuole (CCV). The CCV forms through homotypic fusion between small non-replicative CCVs (nrCCV) and through heterotypic fusion with other compartments, such as endosomes and lysosomes. In this work, we characterise the role of Mts, motor proteins, RILP/Rab7 and Arl8 on the CCV biogenesis. The formation of the CCV was affected when either the dynamics and/or the acetylation state of Mts were modified. Similarly, the overexpression of the dynactin subunit non-functional mutants p150Glued and RILP led to the formation of small nrCCVs. This phenomenon is not observed in cells overexpressing WT proteins, the motor KIF5 or its interacting protein FYCO1. The formation of the CCV was normal in infected cells that overexpressed Arl8 alone or together with hVps41 (a HOPS subunit) or in cells co-overexpressing hVps41 and RILP. The dominant negative mutant of Arl8 and the non-functional hVps41 inhibited the formation of the CCV. When the formation of CCV was affected, the bacterial multiplication diminished. Our results suggest that nrCCVs recruit the molecular machinery that regulate the Mts-dependent retrograde transport, Rab7/RILP and the dynein/dynactin system, as well as the tethering processes such as HOPS complex and Arl8 to finally originate the CCV where C. burnetii multiplies.


Assuntos
Coxiella burnetii/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico , Chlorocebus aethiops , Coxiella burnetii/patogenicidade , Citoesqueleto/metabolismo , Complexo Dinactina/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Microtúbulos/fisiologia , Transporte Proteico/fisiologia , Febre Q/metabolismo , Vacúolos/metabolismo , Células Vero , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
PLoS One ; 10(12): e0145211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26674774

RESUMO

The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Fagocitose , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Células HeLa , Humanos , Camundongos , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA