Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pol Przegl Chir ; 96(3): 1-6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38965992

RESUMO

<b>Indroduction:</b> Hemorrhoids often cause pain, and achieving painless outcomes through surgery is challenging. Hemorrhoidal Laser Ablation, a method for treating severe hemorrhoids, has limited documentation in clinical trials.</br> <br><b>Aim:</b> This retrospective study aimed to present our experience with Hemorrhoidal Laser Ablation in symptomatic grade II, III, and IV internal hemorrhoids and evaluate the efficacy and safety of this relatively recent technique.</br> <br><b>Material and methods:</b> The cohort included 138 patients with symptomatic hemorrhoids who underwent Hemorrhoidal Laser Ablation at three different medical centers in 2017-2022. Patients were treated with a 1470 nm diode laser. Data were collected on clinical and perioperative characteristics and outcomes.</br> <br><b>Results:</b> No evidence of intraoperative complications occurred. There was no rectal tenesmus or alteration of defecation habits. Early mild postoperative symptoms were observed for an average of one week after the operation. The plateau of symptom resolution and downgrading of hemorrhoid size reached approximately six months post-procedure. The short- -term recurrence rate was 0.8% within roughly a month after the laser surgery, while the long-term recurrence rate was 5% over up to five years of follow-up. The overall satisfaction rate was 95% with symptomatic relief.</br> <br><b>Conclusions:</b> Hemorrhoidal Laser Ablation is a painless outpatient technique that does not require general anesthesia. It is an easy-to-perform, convenient, safe, and efficient modality in reducing symptoms and complications of grades II, III, and IV internal hemorrhoids. Hemorrhoidal Laser Ablation limits postoperative discomfort and allows the patient to return to daily routines quickly.</br>.


Assuntos
Hemorroidas , Terapia a Laser , Humanos , Hemorroidas/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Terapia a Laser/métodos , Adulto , Resultado do Tratamento , Idoso , Lasers Semicondutores/uso terapêutico , Hemorroidectomia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos
2.
Polymers (Basel) ; 16(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257016

RESUMO

In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF production methods with comparable morphology. In addition to well-known structural properties, we revealed that the obtained ZnMOFs have a novel optical response, including photoluminescence behavior in the visible range with nanosecond relaxation time, which is also supported by first-principles calculations. Additionally, photocatalytic degradation of methylene blue with ZnMOF was achieved, degrading the 10 ppm methylene blue (MB) solution 83% during 1 min of irradiation time. The application of laser technology can inspire the development of a novel and competent platform for a fast MOF fabrication process and extend the possible applications of MOFs to miniaturized optoelectronic and photonic devices.

3.
Polymers (Basel) ; 15(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242901

RESUMO

Thermally conductive phase-change materials (PCMs) were produced using the crosslinked Poly (Styrene-block-Ethylene Glycol Di Methyl Methacrylate) (PS-PEG DM) copolymer by employing boron nitride (BN)/lead oxide (PbO) nanoparticles. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) methods were used to research the phase transition temperatures, the phase-change enthalpies (melting enthalpy (ΔHm), and crystallization enthalpies (ΔHc)). The thermal conductivities (λ) of the PS-PEG/BN/PbO PCM nanocomposites were investigated. The λ value of PS-PEG/BN/PbO PCM nanocomposite containing BN 13 wt%, PbO 60.90 wt%, and PS-PEG 26.10 wt% was determined to be 18.874 W/(mK). The crystallization fraction (Fc) values of PS-PEG (1000), PS-PEG (1500), and PS-PEG (10,000) copolymers were 0.032, 0.034, and 0.063, respectively. XRD results of the PCM nanocomposites showed that the sharp diffraction peaks at 17.00 and 25.28 °C of the PS-PEG copolymer belonged to the PEG part. Since the PS-PEG/PbO and the PS-PEG/PbO/BN nanocomposites show remarkable thermal conductivity performance, they can be used as conductive polymer nanocomposites for effective heat dissipation in heat exchangers, power electronics, electric motors, generators, communication, and lighting equipment. At the same time, according to our results, PCM nanocomposites can be considered as heat storage materials in energy storage systems.

4.
Sci Rep ; 13(1): 4438, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932107

RESUMO

Coronavirus Disease-19 (COVID-19) is a highly contagious infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The development of rapid antigen tests has contributed to easing the burden on healthcare and lifting restrictions by detecting infected individuals to help prevent further transmission of the virus. We developed a state-of-art rapid antigen testing system, named DIAGNOVIR, based on immune-fluorescence analysis, which can process and give the results in a minute. In our study, we assessed the performance of the DIAGNOVIR and compared the results with those of the qRT-PCR test. Our results demonstrated that the sensitivity and specificity of the DIAGNOVIR were 94% and 99.2%, respectively, with a 100% sensitivity and 96.97% specificity, among asymptomatic patients. In addition, DIAGNOVIR can detect SARS­CoV­2 with 100% sensitivity up to 5 days after symptom onset. We observed that the DIAGNOVIR Rapid Antigen Test's limit of detection (LoD) was not significantly affected by the SARS­CoV­2 variants including Wuhan, alpha (B1.1.7), beta (B.1.351), delta (B.1.617.2) and omicron (B.1.1.529) variants, and LoD was calculated as 8 × 102, 6.81 × 101.5, 3.2 × 101.5, 1 × 103, and 1 × 103.5 TCID50/mL, respectively. Our results indicated that DIAGNOVIR can detect all SARS-CoV-2 variants in just seconds with higher sensitivity and specificity lower testing costs and decreased turnover time.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , Instalações de Saúde , Teste para COVID-19
5.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159642

RESUMO

In this work, gamma-ray shielding features of crosslinked polystyrene-b-polyethyleneglycol block copolymers (PS-b-PEG) blended with nanostructured selenium dioxide (SeO2) and boron nitride (BN) particles were studied. This research details several radiation shielding factors i.e., mass attenuation coefficient (µm), linear attenuation coefficient (µL), radiation protection efficiency (RPE), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). The irradiation properties of our nanocomposites were investigated with rays from the 152Eu source (in the energy intervals from 121.780 keV to 1408.010 keV) in a high-purity germanium (HPGe) detector system, and analyzed with GammaVision software. Moreover, all radiation shielding factors were determined by theoretical calculus and compared with the experimental results. In addition, the morphological and thermal characterization of all nanocomposites was surveyed with various techniques i.e., nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Acceptable compatibility was revealed and observed in all nanocomposites between the experimental and theoretical results. The PS-b-PEG copolymer and nanostructured SeO2 and BN particles exerted a significant effect in enhancing the resistance of the nanocomposites, and the samples with high additive rates exhibited better resistance than the other nanocomposites. From the achieved outcomes, it can be deduced that our polymer-based nanocomposites can be utilized as a good choice in the gamma-irradiation-shielding discipline.

6.
Appl Opt ; 59(16): 4814-4820, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543474

RESUMO

Chalcogenide materials are promising for optical resonant mode tuning of whispering gallery mode (WGM) microresonators due to their high nonlinearity. In this study, this phenomenon was demonstrated for Ge2Sb2Te5-coated toroidal microresonators using an optical postprocess, which utilizes the intrinsically photosensitive property of the Ge2Sb2Te5 coating. A signal laser was used to illuminate the resonator for permanent tuning of the WGMs in a sensitive manner. 0.01 nm and 0.02 nm permanent tuning of the WGMs was recorded for 5 nm and 10 nm coated resonators, respectively. This technique enables resonance matching of coupled optical resonators, which could pave the way for optoelectronic circuitries employing multiple optical microresonators.

7.
Appl Opt ; 58(25): 6926-6933, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503664

RESUMO

Cladding light strippers (CLSs) are vital and one of the critical components for high-power fiber laser applications. In this study, we show the first studies of the formation mechanisms and optimum conditions of a CLS device using a buffered oxide etchant by a combined method of stain (wet) etching and vapor-phase etching. This high-power CLS was shown to result in a stripping performance of ∼17.2 dB at the launched power of 333 W (pump limited). The thermal imaging demonstrates that the maximum temperature reached when operating the device at maximum launched power was ∼75°C. The atomic force microscopy (AFM) results show that the combined method yields crystal-like structures with the height in microscales, whereas other conventional methods give only nanoscale roughness. The method also preserves the diameter of the CLS device close to the bare fiber with about 10 µm tapering leads to a high surface area to strip unwanted light, which is good for heat dissipation. The combined method possesses the outcome of two methods, including both the crystal-like structures and nanosized hillocks, resulting in high-power stripping performance and robustness.

8.
Sci Rep ; 8(1): 12470, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127452

RESUMO

A new method to generate multi-watt-level, octave-spanning, spectrally flat supercontinua stemmed from cascaded Raman scattering in graded-index multimode fibers is reported. Formation dynamics of supercontinua are investigated by studying the effect of fiber length and core size. High power handling capacity of the graded-index multimode fibers is demonstrated by power scaling experiments. Pump pulse repetition rate is scaled from kHz to MHz while pump pulse peak power remains same and ~4 W supercontinuum is achieved with 2 MHz pump repetition rate. To the best of our knowledge, this is the highest average power and repetition supercontinuum source ever reported based on a graded-index multimode silica fiber. Spatial properties of the generated supercontinua are measured and Gaussian-like beam profiles obtained for different wavelength ranges. Numerical simulations are performed to investigate underlying nonlinear dynamics in details and well-aligned with experimental observations.

9.
Opt Lett ; 43(7): 1611-1614, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601043

RESUMO

In this Letter, we demonstrate, to the best of our knowledge, the first all-fiber all-normal-dispersion ytterbium-doped oscillator with a nonlinear multimodal interference-based saturable absorber capable of generating ultrashort dissipative soliton pulses. Additional to functioning as a saturable absorber, the use of multimode fiber segments between single-mode fibers also ensures the bandpass filtering via multimode interference reimaging necessary to obtain dissipative soliton mode locking. The oscillator generates dissipative soliton pulses at 1030 nm with 5.8 mW average power, 5 ps duration, and 44.25 MHz repetition rate. Pulses are dechirped to 276 fs via an external grating compressor. All-fiber cavity design ensures high stability, and ∼70 dB sideband suppression is measured in the radio frequency spectrum. Numerical simulations are performed to investigate cavity dynamics, and obtained results are well matched with experimental observations. The proposed cavity presents an alternative approach to achieve all-fiber dissipative soliton mode locking with a simple and low-cost design.

10.
Appl Opt ; 56(25): 7225-7229, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047984

RESUMO

We demonstrate a 1018 nm ytterbium-doped all-fiber laser pumped by tunable pump sources operating in the broad absorption spectrum around 915 nm. In the experiment, two different pump diodes were tested to pump over a wide spectrum ranging from 904 to 924 nm by altering the cooling temperature of the pump diodes. Across this so-called pump wavelength regime having a 20 nm wavelength span, the amplified stimulated emission (ASE) suppression of the resulting laser was generally around 35 dB, showing good suppression ratio. Comparisons to the conventional 976 nm-pumped 1018 nm ytterbium-doped fiber laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped by tunable pump sources around 915 nm reported in detail.

11.
Sci Rep ; 7(1): 12342, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28955054

RESUMO

Microflow cytometry is a powerful technique for characterization of particles suspended in a solution. In this work, we present a microflow cytometer based on viscoelastic focusing. 3D single-line focusing of microparticles was achieved in a straight capillary using viscoelastic focusing which alleviated the need for sheath flow or any other actuation mechanism. Optical detection was performed by fiber coupled light source and photodetectors. Using this system, we present the detection of microparticles suspended in three different viscoelastic solutions. The rheological properties of the solutions were measured and used to assess the focusing performance both analytically and numerically. The results were verified experimentally, and it has been shown that polyethlyene oxide (PEO) and hyaluronic acid (HA) based sheathless microflow cytometer demonstrates similar performance to state-of-the art flow cytometers. The sheathless microflow cytometer was shown to present 780 particles/s throughput and 5.8% CV for the forward scatter signal for HA-based focusing. The presented system is composed of a single capillary to accommodate the fluid and optical fibers to couple the light to the fluid of interest. Thanks to its simplicity, the system has the potential to widen the applicability of microflow cytometers.

12.
Toxicol Ind Health ; 33(7): 555-563, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28196456

RESUMO

Silver nanoparticles (AgNPs) are the most commonly used nanoparticles (NPs) in medicine, industry and cosmetics. They are generally considered as biocompatible. However, contradictory reports on their biosafety render them difficult to accept as 'safe'. In this study, we evaluated the neurotoxicity of direct AgNP treatment in rat hippocampal slices. We produced pure uncoated AgNPs by a pulsed laser ablation method. NP characterization was performed by Ultraviolet (UV) visible spectrophotometer, scanning electron microscope, transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy. Rat hippocampal slices were treated with AgNPs for an hour. AgNP exposure of hippocampal tissue resulted in a significant decrease in cell survival in a dose-dependent manner. Our TEM results showed that AgNPs were distributed in the extracellular matrix and were taken into the cytoplasm of the neurons. Moreover, we found that only larger AgNPs were taken into the neurons via phagocytosis. This study showed that the pure AgNPs produced by laser ablation are toxic to the neural tissue. We also found that neurons internalized only the large NPs by phagocytosis which seems to be the major mechanism in AgNP neurotoxicity.


Assuntos
Hipocampo/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Neurônios/efeitos dos fármacos , Prata/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/citologia , Masculino , Fagocitose , Ratos , Ratos Wistar , Espectrometria por Raios X
13.
Chemosphere ; 108: 251-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24529395

RESUMO

The present study investigates and models the effect of laser ablated silver nanoparticles (AgNPs) on the development of the aquatic macrophyte Lemna minor. Toxic effects of five different AgNP concentrations (8, 16, 32, 96 and 128 µg L(-1)) on L. minor were recorded over seven days under simulated natural conditions. Biosorption of AgNPs by L. minor was modeled using four sorption isotherms, and the sorption behavior was found to agree most closely with the Langmuir-Freundlich model (R(2)=0.997). While toxic effects of AgNPs could be observed in all models and concentrations, the greatest increase in toxicity was in the 8-32 µg L(-1) range. Dry weight- and frond number-based inhibition experiments suggest that growth inhibition does not necessarily scale with AgNP concentration, and that slight fluctuations in inhibition rates exist over certain concentration ranges. Very close fits (R(2)=0.999) were obtained for all removal models, suggesting that the fluctuations are not caused by experimental variation. In addition, L. minor was found to be a successful bioremediation agent for AgNPs, and displayed higher removal rates for increasing AgNP doses. FT-IR spectroscopy suggests that carbonyl groups are involved in AgNP remediation.


Assuntos
Araceae/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Adsorção , Biodegradação Ambiental , Poluentes Ambientais/química , Lasers , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Biológicos , Tamanho da Partícula , Prata/química
14.
Opt Lett ; 36(2): 244-6, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21263514

RESUMO

We report on the generation of high-average-power and high-peak-power ultrashort pulses from a mode-locked fiber laser operating in the all-normal-dispersion regime. As gain medium, a large-mode-area ytterbium-doped large-pitch photonic-crystal fiber is used. The self-starting fiber laser delivers 27 W of average power at 50.57 MHz repetition rate, resulting in 534 nJ of pulse energy. The laser produces positively chirped 2 ps output pulses, which are compressed down to sub-100 fs, leading to pulse peak powers as high as 3.2 MW.

15.
Opt Lett ; 35(19): 3156-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20890318

RESUMO

We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15.5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1.9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber.

16.
Opt Lett ; 35(13): 2311-3, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596230

RESUMO

We report on high-energy ultrashort pulse generation from an all-normal-dispersion large-mode-area fiber laser by exploiting an efficient combination of nonlinear polarization evolution (NPE) and a semiconductor-based saturable absorber mode-locking mechanism. The watt-level laser directly emits chirped pulses with a duration of 1 ps and 163 nJ of pulse energy. These can be compressed to 77 fs, generating megawatt-level peak power. Intracavity dynamics are discussed by numerical simulation, and the intracavity pulse evolution reveals that NPE plays a key role in pulse shaping.

17.
Opt Lett ; 35(10): 1578-80, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20479814

RESUMO

We report the experimental generation of two-soliton molecules in an all-polarization-maintaining ytterbium-doped fiber laser operating in the normal dispersion regime. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80% measured as an averaged value. Moreover, the numerical modeling confirms that the limited modulation depth of the spectrum is caused by the evolution of the phase difference between the pulses.

18.
Opt Lett ; 34(23): 3731-3, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19953177

RESUMO

We report the generation of sub-150 fs pulses from a passively mode-locked laser featuring a large-mode-area microstructure fiber. Reliable self-starting mode-locking is achieved using a fast semiconductor saturable absorber mirror. The laser generates 63 nJ chirped pulses at 22 MHz repetition rate for an average power of 1.4 W. The 2.2 ps output pulses are compressed outside the cavity to 150 fs.

19.
Opt Lett ; 34(10): 1585-7, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19448829

RESUMO

We report on the generation of high-energy ultrashort pulses from a mode-locked Yb-doped large-mode-area fiber laser operating in the all-normal dispersion regime. The self-starting fiber laser emits 9 W of average output power at a pulse repetition rate of 9.7 MHz, corresponding to a pulse energy of 927 nJ. The laser produces positively chirped 8 ps output pulses, which are then compressed down to 711 fs. These compressed pulses exhibit megawatt-level peak powers. To our knowledge, this is the first time that a mode-locked fiber oscillator has generated femtosecond pulses with pulse energies approaching the microjoule level in combination with high average output power. Numerical simulations show excellent agreement with experimental results and reveal further scaling potential, which is discussed.

20.
Opt Lett ; 32(18): 2738-40, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17873953

RESUMO

We report on an all-normal-dispersion mode-locked fiber laser based on a large-mode-area Yb-doped microstructure fiber and using a high nonlinear modulation depth semiconductor saturable absorber mirror. The laser delivers 3.3 W of average output power with positively chirped 5.5 ps pulses at a center wavelength of 1033 nm. The pulse repetition rate is 46.4 MHz, which results in an energy per pulse of 71 nJ. These pulses are extracavity dechirped down to 516 fs by using bulk gratings. The average power of the dechirped pulses is 2.3 W, which corresponds to a peak power of more than 96 kW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...