Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781373

RESUMO

Archaeological lime mortars from the Tower Keep and West perimeter wall of Irulegi Castle (Navarre, Spain) were analysed to determine susceptibility to deterioration. Chemical, mineralogical, textural and physical characterisation was performed by different tests and multianalysis techniques in order to determine the intrinsic features of the original historical mortars at the castle. Samples from the Tower Keep are more prone to deteriorate compared with the West perimeter wall due to high water absorption capacity and high porosity. A high degree of pore interconnection, high desorption index and the presence of high pore volume in the 0.01 to 1 µm size range affect the mortar durability since pores retain water longer inside the mortar. Local environment conditions with persistent annual rainfall, high humidity and temperature variations contribute to the decay process of the original mortar. Characterisation of historical mortars not only allows better understanding of susceptibility to deterioration but also helps the design of compatible and durable repair mortar for future interventions on historical heritage. Compatibility of new materials with the historical mortar will be ensured by studying mortar characteristics and properties.

2.
PLoS One ; 12(5): e0176572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472159

RESUMO

The Islamic necropolis discovered in Tauste (Zaragoza, Spain) is the only evidence that a large Muslim community lived in the area between the 8th and 10th centuries. A multi-isotope approach has been used to investigate the mobility and diet of this medieval Muslim population living in a shifting frontier region. Thirty-one individuals were analyzed to determine δ15N, δ13C, δ18O and 87Sr/86Sr composition. A combination of strontium and oxygen isotope analysis indicated that most individuals were of local origin although three females and two males were non-local. The non-local males would be from a warmer zone whereas two of the females would be from a more mountainous geographical region and the third from a geologically-different area. The extremely high δ15N baseline at Tauste was due to bedrock composition (gypsum and salt). High individual δ15N values were related to the manuring effect and consumption of fish. Adult males were the most privileged members of society in the medieval Muslim world and, as isotope data reflected, consumed more animal proteins than females and young males.


Assuntos
Dieta , Exercício Físico , Islamismo , Isótopos/análise , Arqueologia , Feminino , História Medieval , Humanos , Masculino
3.
Anal Bioanal Chem ; 409(14): 3597-3610, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28349169

RESUMO

Libyan desert glass (LDG) is a melt product whose origin is still a matter of controversy. With the purpose of adding new information about this enigma, the present paper analyzes the inner part of LDG specimens and compares them with the results of LDG surfaces. An integrated analytical methodology was used combining different techniques such as Raman spectroscopy, in point-by-point and imaging modes, scanning electron microscopy with X-ray microanalysis (SEM-EDS), energy-dispersive micro X-ray fluorescence spectrometry (µ-EDXRF), electron probe micro analyzer (EPMA), and optical cathodoluminescence (Optical-CL). According to our results, flow structures of the melt and the amorphous nature of the matrix could be discerned. Moreover, the observed displacement of Raman bands, such as in the cases of quartz and zircon, and the identification of certain compounds such as coesite (the most clarifying phase of high pressures), α-cristobalite, gypsum, anhydrite, corundum, rutile, amorphous calcite, aragonite, and calcite allowed us to know that LDGs could be subjected to shock pressures between 6 and more than 30 GPa, and temperatures between 300 and 1470 °C. The differences of temperature and pressure would be provoked by different cooling processes during the impact. Besides, in most cases the minerals corresponding to high pressure and temperatures were located in the inner part of the LDGs, with some exceptions that could be explained because they were trapped subsequently to the impact; there was more than one impact or heterogeneous cooling.Furthermore, nitrogen and oxygen gases were identified inside bubbles, which could have been introduced from the terrestrial atmosphere during the meteorite impact.These data helped us to clarify some clues about the origin of these enigmatic samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...