Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(5): 1240-1249, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215317

RESUMO

Wilkinson power dividers (WPDs) are a popular element in RF and microwave technologies known for providing isolation capabilities. However, the benefits that WPDs could offer to integrated photonic systems are far less studied. Here, we investigate the thermal emission from and the noise performance of silicon-on-insulator (SOI) WPDs. We find that WPDs exhibit a noiseless port, with important implications for receiving systems and absorption-based quantum state transformations. At the same time, the thermal signals exiting noisy ports exhibit nontrivial correlations, opening the possibility for noise cancellation. We analyze passive and active networks containing WPDs showing how such nontrivial correlations can prevent the amplification of the thermal noise introduced by WPDs while benefiting from their isolation capabilities. Using this insight, we propose a modified ring-resonator amplifier that improves by N times the SNR in comparison with conventional traveling wave and ring-resonator amplifiers, with N being the number of inputs/outputs of the WPD. We believe that our results represent an important step forward in the implementation of SOI-WPDs and their integration in complex photonic networks, particularly for mid-IR and quantum photonics applications.

2.
Sci Rep ; 12(1): 11797, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821399

RESUMO

In this work, we report on a twin-core fiber sensor system that provides improved spectral efficiency, allows for multiplexing and gives low level of crosstalk. Pieces of the referred strongly coupled multicore fiber are used as sensors in a laser cavity incorporating a pulsed semiconductor optical amplifier (SOA). Each sensor has its unique cavity length and can be addressed individually by electrically matching the periodic gating of the SOA to the sensor's cavity roundtrip time. The interrogator acts as a laser and provides a narrow spectrum with high signal-to-noise ratio. Furthermore, it allows distinguishing the response of individual sensors even in the case of overlapping spectra. Potentially, the number of interrogated sensors can be increased significantly, which is an appealing feature for multipoint sensing.

3.
Sci Rep ; 12(1): 9566, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688862

RESUMO

Optical fiber-based Localized Surface Plasmon Resonance (OF-LSPR) biosensors have emerged as an ultra-sensitive miniaturized tool for a great variety of applications. Their fabrication by the chemical immobilization of gold nanoparticles (AuNPs) on the optic fiber end face is a simple and versatile method. However, it can render poor reproducibility given the number of parameters that influence the binding of the AuNPs. In order to develop a method to obtain OF-LSPR sensors with high reproducibility, we studied the effect that factors such as temperature, AuNPs concentration, fiber core size and time of immersion had on the number and aggregation of AuNPs on the surface of the fibers and their resonance signal. Our method consisted in controlling the deposition of a determined AuNPs density on the tip of the fiber by measuring its LSPR signal (or plasmonic signal, Sp) in real-time. Sensors created thus were used to measure changes in the refractive index of their surroundings and the results showed that, as the number of AuNPs on the probes increased, the changes in the Sp maximum values were ever lower but the wavelength shifts were higher. These results highlighted the relevance of controlling the relationship between the sensor composition and its performance.


Assuntos
Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície , Ouro/química , Nanopartículas Metálicas/química , Fibras Ópticas , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos
4.
Opt Express ; 29(12): 18469-18480, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154102

RESUMO

Bare and gold-coated tilted fiber Bragg gratings (TFBGs) can nowadays be considered as a mature technology for volume and surface refractometric sensing, respectively. As for other technologies, a continuous effort is made towards the production of even more sensitive sensors, thereby enabling a high-resolution screening of the surroundings and the possible detection of rare events. To this aim, we study in this work the development of TFBG refractometers in 4-core fibers. In particular, we show that the refractometric sensitivity of the cut-off mode can reach 100 nm/RIU for a bare grating. Using another demodulation method, a tenfold sensitivity increase is obtained when tracking the extremum of the SPR (surface plasmon resonance) envelope for a gold-coated TFBG configuration. Immobilization of DNA probes was performed as a proof-of-concept to assess the high surface sensitivity of the device.

5.
Sci Rep ; 11(1): 5989, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727681

RESUMO

We propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).

6.
Sci Rep ; 10(1): 16180, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999364

RESUMO

We report on a compact, highly sensitive all-fiber accelerometer suitable for low frequency and low amplitude vibration sensing. The sensing elements in the device are two short segments of strongly coupled asymmetric multicore fiber (MCF) fusion spliced at 180° with respect to each other. Such segments of MCF are sandwiched between standard single mode fibers. The reflection spectrum of the device exhibits a narrow spectrum whose height and position in wavelength changes when it is subjected to vibrations. The interrogation of the accelerometer was carried out by a spectrometer and a photodetector to measure simultaneously wavelength shift and light power variations. The device was subjected to a wide range of vibration frequencies, from 1 mHz to 30 Hz, and accelerations from 0.76 mg to 29.64 mg, and performed linearly, with a sensitivity of 2.213 nW/mg. Therefore, we believe the accelerometer reported here may represent an alternative to existing electronic and optical accelerometers, especially for low frequency and amplitude vibrations, thanks to its compactness, simplicity, cost-effectiveness, implementation easiness and high sensitivity.

7.
Materials (Basel) ; 13(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422861

RESUMO

This work reports a novel method to create a 3D map of the refractive index of different graded-index polymer optical fibers (GI-POF), measuring the Raman spectra at different points of their transverse sections. Raman fingerprints provide accurate molecular information of the sample with high spatial resolution. The refractive index of GI-POFs is modified by adding a dopant in the preform; therefore, by recording the intensities of the Raman peaks related to the dopant material, a 3D map of the refractive index is rendered. In order to demonstrate the usefulness of the method, three different GI-POFs were characterized and the obtained results were compared with the information provided by the manufacturers. The results show accurate 3D maps of the refractive index taken in the actual GI-POF end faces, showing different imperfections that manufacturers do not take into account, such as the slight deviations of the azimuthal symmetry. The simplicity and the feasibility of the technique mean this method has high potential for fiber characterization purposes.

8.
ACS Sens ; 5(7): 2018-2024, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32241107

RESUMO

The facet of optical fibers coated with nanostructures enables the development of ultraminiature and sensitive (bio)chemical sensors. The sensors reported until now lack specificity, and the fabrication methods offer poor reproducibility. Here, we demonstrate that by transforming the facet of conventional multimode optical fibers onto plasmon resonance energy transfer antenna surfaces, the specificity issues may be overcome. To do so, a low-cost chemical approach was developed to immobilize gold nanoparticles on the optical fiber facet in a reproducible and controlled manner. Our nanosensors are highly selective as plasmon resonance energy transfer is a nanospectroscopic effect that only occurs when the resonance wavelength of the nanoparticles matches that of the target parameter. As an example, we demonstrate the selective detection of picomolar concentrations of copper ions in water. Our sensor is 1000 times more sensitive than the state-of-the-art technologies. An additional advantage of our nanosensors is their simple interrogation; it comprises of a low-power light-emitting diode, a multimode optical fiber coupler, and a miniature spectrometer. We believe that the plasmon resonance energy transfer-based fiber-optic platform reported here may pave the way for the development of a new generation of ultraminiature, portable, and hypersensitive and selective (bio)chemical sensors.


Assuntos
Nanopartículas Metálicas , Fibras Ópticas , Transferência de Energia , Ouro , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...