Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959042

RESUMO

Cocoa liquor is the primary precursor of the worldwide highly appreciated commodity chocolate. Its quality depends on several factors, such as the type of cocoa, the fermentation process, and the control of the contaminants in the fermented beans. This study aims to evaluate whether the induced magnetic field treatment during the fermentation process or the pathogen reduction with gamma irradiation after the fermentation affect the characteristics of the cocoa liquor obtained from Ecuadorian cocoa beans. For this purpose, liquor samples from controls (standard process), from beans treated with an induced magnetic field up to 80 mT, and from beans irradiated with nominal doses up to 3 kGy were characterized through Raman spectroscopic analysis and sensorial evaluation. The most relevant bands of the cocoa liquor were assigned according to reports from the literature, spectroscopic data, and chemometrics. The spectra corresponding to different treatments and doses were visually very similar, but they could be discriminated using OPLS-DA models, where the most intense Raman signals were attributed to the lipid components. The sensorial evaluation rated the presence of floral, fruity, almondy, acid, and bitter flavors, along with astringency and intense aroma, and these attributes exhibited variable behavior depending on the dose of the irradiation or magnetic treatment. Therefore, both treatments may exert an influence on cocoa beans and, therefore, on the cocoa liquor quality.

2.
Anal Chim Acta ; 1282: 341841, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37923402

RESUMO

BACKGROUND: Bodily fluid stains are one of the most relevant evidence that can be found at the crime scene as it provides a wealth of information to the investigators. They help to report on the individuals involved in the crime, to check alibis, or to determine the type of crime that has been committed. They appear as stains in different types of substrates, some of them porous, which can interfere in the analysis. The spectroscopy techniques combined with chemometrics are showing increasing potential for their use in the analysis of such samples due to them being fast, sensitive, and non-destructive. FINDINGS: This is a comprehensive review of the studies that used different spectroscopic techniques followed by chemometrics for analysing biological fluid stains on several surfaces, and under various conditions. It focuses on the bodily fluid stains and the most suitable spectroscopic techniques to study forensic scientific problems such as the substrate's characteristics, the influence of ambient conditions, the aging process of the bodily fluids, the presence of animal bodily fluids and non-biological fluids (interfering substances), and the bodily fluid mixtures. The most widely used techniques were Raman spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR). Nonetheless, other non-destructive techniques have been also used, like near infrared hyperspectral imaging (HSI-NIR) or surface enhanced Raman spectroscopy (SERS), among others. This work provides the criteria for the selection of the most promising non-destructive techniques for the effective in situ detection of biological fluid stains at crime scene investigations. SIGNIFICANCE AND NOVELTY: The use of the proper spectroscopic and chemometric approaches on the crime scene is expected to improve the support of forensic sciences to criminal investigations. Evidence may be analysed in a non-destructive manner and kept intact for further analysis. They will also speed up forensic investigations by allowing the selection of relevant samples from occupational ones.


Assuntos
Quimiometria , Corantes , Humanos , Medicina Legal/métodos , Ciências Forenses/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122409, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36720190

RESUMO

Blood is the most common and relevant bodily fluid that can be found in crime scenes. It is critical to correctly identify it, and to be able to differentiate it from other substances that may also appear at the crime scene. In this work, several stains of blood, chocolate, ketchup, and tomato sauce on five different substrates (plywood, metal, gauze, denim, and glass) were analysed by ATR FTIR spectroscopy assisted with orthogonal partial least square-discriminant analysis (OPLS-DA) models. It was possible to differentiate blood from the environmental interfering substances independently of the substrate they were on, and to differentiate bloodstains according to the substrate they were deposited on. These results represent a proof-of-concept that open new horizons to differentiate bloodstains from other interfering substances on common substrates present in crime scenes.


Assuntos
Quimiometria , Corantes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Discriminante , Análise dos Mínimos Quadrados
4.
Toxics ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35324740

RESUMO

The Raman analysis of marijuana is challenging because of the sample's easy photo-degradation caused by the laser intensity. In this study, optimization of collection parameters and laser focusing on marijuana trichome heads allowed collecting Raman spectra without damaging the samples. The Raman spectra of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) standard cannabinoids were compared with Raman spectra of five different types of marijuana: four Sativa varieties (Amnesia Haze, Amnesia Hy-Pro, Original Amnesia, and Y Griega) and one Indica variety (Black Domina). The results verified the presence of several common spectral bands that are useful for marijuana characterization. Results were corroborated by the quantum chemical simulated Raman spectra of their acid-form (tetrahydrocannabinol acid (THCA), cannabidiol acid (CBDA)) and decarboxylated cannabinoids (THC, CBD, and CBN). A chemometrics-assisted method based on Raman microscopy and OPLS-DA offered good classification among the different marijuana varieties allowing identification of the most significant spectral bands.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120695, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34896680

RESUMO

Vibrational spectroscopic techniques have shown to be highly suitable for the identification and comparison of textile fibres and clothing fabrics. On the other hand, new chemical imaging modes based on these spectroscopic techniques are becoming useful in multiple fields. This is particularly important to, for instance, chemically visualize and screen different samples including forensic evidence (crime scene investigation), chemical and food products (quality control), biological tissues and living beings (medical imaging), among others. This study explores the forensic examination and selective chemical visualization of textile fibres and clothing fabrics using Raman imaging. Four experiments were performed, which were focused on the screening of (i) white different materials made of 100 % cotton (gauze, cotton wool, t-shirt, and swab), (ii) polyester and cotton fabrics evidence of the same colour, (iii) five different coloured cotton fabrics, and (iv) textile fibres of different materials (acrylic, cotton, nylon, polyester, and silk). Several methods of multivariate chemometric analysis including principal component analysis (PCA), multivariate analysis of variance (MANOVA), and multivariate curve resolution (MCR) were applied to enhance the limited visual comparison of the spectra accomplished with the unaided eye. The results evidenced the suitability of Raman imaging to statistically discriminate textile fibres and fabrics due to the chemical composition of both the clothing material and the dyestuff.


Assuntos
Quimiometria , Têxteis , Diagnóstico por Imagem , Análise Multivariada , Seda
6.
Artigo em Inglês | MEDLINE | ID: mdl-34682332

RESUMO

Ozone chambers have emerged as an alternative method to decontaminate firefighters' Personal Protective Equipment (PPE) from toxic fire residues. This work evaluated the efficiency of using an ozone chamber to clean firefighters' PPE. This was achieved by studying the degradation of pyrene and 9-methylanthracene polycyclic aromatic hydrocarbons (PAHs). The following experiments were performed: (i) insufflating ozone into PAH solutions (homogeneous setup), and (ii) exposing pieces of PPE impregnated with the PAHs to an ozone atmosphere for up to one hour (heterogeneous setup). The ozonolysis products were assessed by Fourier Transform Infrared Spectroscopy (FTIR), Thin-Layer Chromatography (TLC), and Mass Spectrometry (MS) analysis. In the homogeneous experiments, compounds of a higher molecular weight were produced due to the incorporation of oxygen into the PAH structures. Some of these new compounds included 4-oxapyren-5-one (m/z 220) and phenanthrene-4,5-dicarboxaldehyde (m/z 234) from pyrene; or 9-anthracenecarboxaldehyde (m/z 207) and hydroxy-9,10-anthracenedione (m/z 225) from 9-methylanthracene. In the heterogeneous experiments, a lower oxidation was revealed, since no byproducts were detected using FTIR and TLC, but only using MS. However, in both experiments, significant amounts of the original PAHs were still present even after one hour of ozone treatment. Thus, although some partial chemical degradation was observed, the remaining PAH and the new oxygenated-PAH compounds (equally or more toxic than the initial molecules) alerted us of the risks to firefighters' health when using an ozone chamber as a unique decontamination method. These results do not prove the ozone-advertised efficiency of the ozone chambers for decontaminating (degrading the toxic combustion residues into innocuous compounds) firefighters' PPE.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Exposição Ocupacional , Ozônio , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Ocupacionais do Ar/análise , Humanos , Exposição Ocupacional/análise , Equipamento de Proteção Individual , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
Sci Total Environ ; 729: 138824, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32361441

RESUMO

We studied the occurrence of microplastics in sediments of artificially and non-artificially recharged lagoons from the network of endorheic wetlands called "La Mancha Húmeda", declared Biosphere Reserve by UNESCO. The particles sampled in this study covered the 25 µm-5 mm range. Films were the dominant microplastic typology in non-artificially recharged lagoons, while fibres and fragments were more abundant in those receiving wastewater. The concentration of microplastics in sediments reached up to 24.4 ± 5.2 microplastics/g, while plastic litter counts yielded <1 particle/g in non-wastewater receiving lagoons. Eleven types of plastic were identified using Micro-Fourier Transform Infrared Spectroscopy (micro-FTIR), the most abundant being the polyolefins polyethylene and polypropylene, and polyester and acrylic fibres. The statistical analysis of FTIR spectra confirmed the similarity between samples taken from recharged lagoons and wastewater treatment plant effluents. Overall, our results showed that endorheic lagoons are very sensitive to the accumulation of persistent pollutants, which include microplastics. The recharge of lagoons with wastewater effluents to maintain water levels, even if correctly treated according to current standards, is not a sustainable practice. Due to the closed character of endorheic basins, the continuous input of wastewater led to the accumulation of microplastics in sediments of wastewater receiving lagoons up to 40 times over non-recharged lagoons.

8.
Talanta ; 166: 292-299, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213237

RESUMO

Crime scene investigation (CSI) requires the ultimate available technology for a rapid, non-destructive, and accurate detection of a wide variety of evidence including invisible stains of bodily fluids. Particularly crucial is the discrimination of semen in stained evidence from sexual abuse cases. This is because those evidence have high odds of containing the DNA from the aggressor. To this aim, we demonstrated the potential of near infrared hyperspectral imaging (NIR-HSI) to make visible stains of semen, vaginal fluid, and urine on fabrics, which lays the bases to face the challenging visualization and discrimination of semen within bodily fluids mixtures. Combining the NIR-HSI data and simple chemometric techniques such as principal component analysis and classical least squares regression, we have revealed the location of semen, vaginal fluid and urine in bodily fluids stained evidence.


Assuntos
Líquidos Corporais/metabolismo , Ciências Forenses , Raios Infravermelhos , Imagem Molecular/métodos , Sêmen/metabolismo , Vagina/metabolismo , Feminino , Humanos , Masculino
9.
Talanta ; 149: 257-265, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26717839

RESUMO

Specific analytical procedures are requested for the forensic analysis of pre- and post-blast consumer firework samples, which present significant challenges. Up to date, vibrational spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) have not been tested for the analysis of post-blast residues in spite of their interesting strengths for the forensic field. Therefore, this work proposes a simple and fast procedure for the sampling and analysis of consumer firework post-blast residues by a portable FTIR instrument with an Attenuated Total Reflection (ATR) accessory. In addition, the post-blast residues spectra of several consumer fireworks were studied in order to achieve the identification of their original chemical compositions. Hence, this work analysed 22 standard reagents usually employed to make consumer fireworks, or because they are related to their combustion products. Then, 5 different consumer fireworks were exploded, and their residues were sampled with dry cotton swabs and directly analysed by ATR-FTIR. In addition, their pre-blast fuses and charges were also analysed in order to stablish a proper comparison. As a result, the identification of the original chemical compositions of the post-blast samples was obtained. Some of the compounds found were potassium chlorate, barium nitrate, potassium nitrate, potassium perchlorate or charcoal. An additional study involving chemometric tools found that the results might greatly depend on the swab head type used for the sampling, and its sampling efficiency. The proposed procedure could be used as a complementary technique for the analysis of consumer fireworks post-blast residues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...