Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(24): 5368-5380.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37992719

RESUMO

Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.


Assuntos
Região CA1 Hipocampal , Rememoração Mental , Região CA1 Hipocampal/fisiologia , Rememoração Mental/fisiologia , Aprendizagem , Plasticidade Neuronal/fisiologia , Tonsila do Cerebelo
2.
Sci Adv ; 9(45): eadg9921, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939176

RESUMO

Infantile amnesia is possibly the most ubiquitous form of memory loss in mammals. We investigated how memories are stored in the brain throughout development by integrating engram labeling technology with mouse models of infantile amnesia. Here, we found a phenomenon in which male offspring in maternal immune activation models of autism spectrum disorder do not experience infantile amnesia. Maternal immune activation altered engram ensemble size and dendritic spine plasticity. We rescued the same apparently forgotten infantile memories in neurotypical mice by optogenetically reactivating dentate gyrus engram cells labeled during complex experiences in infancy. Furthermore, we permanently reinstated lost infantile memories by artificially updating the memory engram, demonstrating that infantile amnesia is a reversible process. Our findings suggest not only that infantile amnesia is due to a reversible retrieval deficit in engram expression but also that immune activation during development modulates innate, and reversible, forgetting switches that determine whether infantile amnesia will occur.


Assuntos
Transtorno do Espectro Autista , Humanos , Lactente , Masculino , Camundongos , Animais , Amnésia , Encéfalo , Modelos Animais de Doenças , Cabeça , Mamíferos
3.
Cell Rep ; 42(8): 112999, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590145

RESUMO

Long-term memories are stored as configurations of neuronal ensembles, termed engrams. Although investigation of engram cell properties and functionality in memory recall has been extensive, less is known about how engram cells are affected by forgetting. We describe a form of interference-based forgetting using an object memory behavioral paradigm. By using activity-dependent cell labeling, we show that although retroactive interference results in decreased engram cell reactivation during recall trials, optogenetic stimulation of the labeled engram cells is sufficient to induce memory retrieval. Forgotten engrams may be reinstated via the presentation of similar or related environmental information. Furthermore, we demonstrate that engram activity is necessary for interference to occur. Taken together, these findings indicate that retroactive interference modules engram expression in a manner that is both reversible and updatable. Inference may constitute a form of adaptive forgetting where, in everyday life, new perceptual and environmental inputs modulate the natural forgetting process.


Assuntos
Memória de Longo Prazo , Memória , Rememoração Mental , Optogenética
4.
J Biol Chem ; 298(5): 101866, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35346687

RESUMO

Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.


Assuntos
Aprendizagem , Memória , Animais , Encéfalo/fisiologia , Memória/fisiologia , Neurônios/fisiologia
5.
Nat Commun ; 12(1): 3098, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035282

RESUMO

The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Neovascularização Patológica/genética , Placa Amiloide/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Vasos Sanguíneos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Placa Amiloide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
6.
Curr Opin Neurobiol ; 67: 215-225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33812274

RESUMO

Understanding memory requires an explanation for how information can be stored in the brain in a stable state. The change in the brain that accounts for a given memory is referred to as an engram. In recent years, the term engram has been operationalized as the cells that are activated by a learning experience, undergoes plasticity, and are sufficient and necessary for memory recall. Using this framework, and a growing toolbox of related experimental techniques, engram manipulation has become a central topic in behavioral, systems, and molecular neuroscience. Recent research on the topic has provided novel insights into the mechanisms of long-term memory storage, and its overlap with instinct. We propose that memory and instinct may be embodied as isomorphic topological structures within the brain's microanatomical circuitry.


Assuntos
Aprendizagem , Memória , Encéfalo , Armazenamento e Recuperação da Informação
7.
Nat Aging ; 1(4): 385-399, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117599

RESUMO

Genetic Alzheimer's disease (AD) risk factors associate with reduced defensive amyloid ß plaque-associated microglia (AßAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AßAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AßAM clustering and proliferation and increases Aß neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aß plaque microglial coverage and an increase of Aß plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.


Assuntos
Doença de Alzheimer , Hipóxia Celular , Fator 1 Induzível por Hipóxia , Microglia , Mitocôndrias , Doença de Alzheimer/fisiopatologia , Mitocôndrias/metabolismo , Microglia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo , Fatores de Risco , Animais , Camundongos , Humanos , Linhagem Celular , Fosforilação Oxidativa
8.
Aging Cell ; 17(5): e12821, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30058223

RESUMO

The striatum integrates motor behavior using a well-defined microcircuit whose individual components are independently affected in several neurological diseases. The glial cell line-derived neurotrophic factor (GDNF), synthesized by striatal interneurons, and Sonic hedgehog (Shh), produced by the dopaminergic neurons of the substantia nigra (DA SNpc), are both involved in the nigrostriatal maintenance but the reciprocal neurotrophic relationships among these neurons are only partially understood. To define the postnatal neurotrophic connections among fast-spiking GABAergic interneurons (FS), cholinergic interneurons (ACh), and DA SNpc, we used a genetically induced mouse model of postnatal DA SNpc neurodegeneration and separately eliminated Smoothened (Smo), the obligatory transducer of Shh signaling, in striatal interneurons. We show that FS postnatal survival relies on DA SNpc and is independent of Shh signaling. On the contrary, Shh signaling but not dopaminergic striatal innervation is required to maintain ACh in the postnatal striatum. ACh are required for DA SNpc survival in a GDNF-independent manner. These data demonstrate the existence of three parallel but interdependent neurotrophic relationships between SN and striatal interneurons, partially defined by Shh and GDNF. The definition of these new neurotrophic interactions opens the search for new molecules involved in the striatal modulatory circuit maintenance with potential therapeutic value.


Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Substância Negra/fisiologia , Acetilcolina/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/patologia , Transdução de Sinais
9.
Dis Model Mech ; 11(5)2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29784659

RESUMO

Amnesia - the loss of memory function - is often the earliest and most persistent symptom of dementia. It occurs as a consequence of a variety of diseases and injuries. These include neurodegenerative, neurological or immune disorders, drug abuse, stroke or head injuries. It has both troubled and fascinated humanity. Philosophers, scientists, physicians and anatomists have all pursued an understanding of how we learn and memorise, and why we forget. In the last few years, the development of memory engram labelling technology has greatly impacted how we can experimentally study memory and its disorders in animals. Here, we present a concise discussion of what we have learned about amnesia through the manipulation of engrams, and how we may use this knowledge to inform novel treatments of amnesia.


Assuntos
Amnésia/complicações , Transtornos da Memória/complicações , Amnésia/fisiopatologia , Amnésia/terapia , Animais , Modelos Animais de Doenças , Humanos , Transtornos da Memória/fisiopatologia , Rememoração Mental
10.
Front Neuroanat ; 10: 73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445711

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is proposed as a therapeutic tool in Parkinson's disease, addiction-related disorders, and neurodegenerative conditions affecting motor neurons (MNs). Despite the high amount of work about GDNF therapeutic application, the neuronal circuits requiring GDNF trophic support in the brain and spinal cord (SC) are poorly characterized. Here, we defined GDNF and GDNF family receptor-α 1 (GFRα1) expression pattern in the brain and SC of newborn and adult mice. We performed systematic and simultaneous detection of EGFP and LacZ expressing alleles in reporter mice and asked whether modifications of this signaling pathway lead to a significant central nervous system (CNS) alteration. GFRα1 was predominantly expressed by neurons but also by an unexpected population of non-neuronal cells. GFRα1 expression pattern was wider in neonatal than in adult CNS and GDNF expression was restricted in comparison with GFRα1 at both developmental time points. The use of confocal microscopy to imaging X-gal deposits and EGFP allowed us to identify regions containing cells that expressed both proteins and to discriminate between auto and non-autotrophic signaling. We also suggested long-range GDNF-GFRα1 circuits taking advantage of the ability of the EGFP genetically encoded reporter to label long distance projecting axons. The complete elimination of either the ligand or the receptor during development did not produce major abnormalities, suggesting a preponderant role for GDNF signaling during adulthood. In the SC, our results pointed to local modulatory interneurons as the main target of GDNF produced by Clarke's column (CC) cells. Our work increases the understanding on how GDNF signals in the CNS and establish a crucial framework for posterior studies addressing either the biological role of GDNF or the optimization of trophic factor-based therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...