Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18910, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144623

RESUMO

In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm.

2.
ChemSusChem ; 11(14): 2367-2374, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29813183

RESUMO

The efficient generation of hydrogen via water electrolysis requires highly active oxygen evolution catalysts. Among the active metals, iridium oxide provides the best compromise in terms of activity and stability. The limited availability and usage in other applications demands an efficient utilization of this precious metal. Forming mixed oxides with titania promises improved Ir utilization, but often at the cost of a low catalyst surface area. Moreover, the role of Ir in establishing a sufficiently conductive mixed oxide has not been elucidated so far. We report a new approach for the synthesis of Ir/TiOx mixed-oxide catalysts with defined template-controlled mesoporous structure, low crystallinity, and superior oxygen evolution reaction (OER) activity. The highly accessible pore system provides excellent Ir dispersion and avoids transport limitations. A controlled variation of the oxides Ir content reveals the importance of the catalysts electrical conductivity: at least 0.1 S m-1 are required to avoid limitations owing to slow electron transport. For sufficiently conductive oxides a clear linear correlation between Ir surface sites and OER currents can be established, where all accessible Ir sites equally contribute to the reaction. The optimized catalysts outperform Ir/TiOx materials reported in literature by about a factor of at least four.

3.
Adv Powder Technol ; 28(7): 1647-1659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29200658

RESUMO

The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale.

4.
Anal Chem ; 88(14): 7083-90, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27334649

RESUMO

One of the crucial characteristics of functionalized thin films is their porosity (i.e., the ratio between the pore volume and the volume of the whole film). Due to the very low amount of material per coated area corresponding to thin films, it is a challenge for analytics to measure the film porosity. In this work, we present an approach to determine the porosity of thin films by means of electron probe microanalysis (EPMA) either by wavelength-dispersive X-ray spectrometry (WDX) or by energy-dispersive X-ray spectrometry (EDX) with a scanning electron microscope (SEM). The procedure is based on the calculation of the film mass deposition from electron-excited X-ray spectra. The mass deposition is converted into film density by division of measured film thickness. Finally, the film porosity is calculated from the measured film density and the density of bulk, nonporous film material. The general applicability of the procedure to determine the porosity is demonstrated on thin templated mesoporous TiO2 films, dip-coated on silicon wafer, with controlled porosity in the range of 15 to 50%. The high accuracy of the mass deposition as determined from X-ray spectra was validated with independent methods (ICP-OES and weighing). Furthermore, for the validation of the porosity results, ellipsometry, interference fringes method (IFM), and focused ion beam (FIB) cross sectioning were employed as independent techniques. Hence, the approach proposed in the present study is proven to be suited as a new analytical tool for accurate and relatively fast determination of the porosity of thin films.

5.
ChemSusChem ; 8(11): 1908-15, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25958795

RESUMO

Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75 mA cm(-2) .


Assuntos
Irídio/química , Oxigênio/química , Eletroquímica , Polímeros/química , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície , Volatilização
6.
ACS Appl Mater Interfaces ; 6(22): 19559-65, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25372504

RESUMO

Minimizing efficiency losses caused by unwanted light reflection at the interface between lenses, optical instruments and solar cells with the surrounding medium requires antireflective coatings with adequate refractive index and coating thickness. We describe a new type of antireflective coating material with easily and independently tailorable refractive index and coating thickness based on the deposition of colloidal MgF2 nanoparticles. The material synthesis employs micelles of amphiphilic block copolymers as structure directing agent to introduce controlled mesoporosity into MgF2 film. The coatings thickness can be easily adjusted by the applied coating conditions. The coatings refractive index is determined by the materials porosity, which is controlled by the amount of employed pore template. The refractive index can be precisely tuned between 1.23 and 1.11, i.e., in a range that is not accessible to nonporous inorganic materials. Hence, zero reflectance conditions can be established for a wide range of substrate materials.

7.
Chemphyschem ; 13(6): 1385-94, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22334540

RESUMO

The performance of electrochemical reactions depends strongly on the morphology and structure of the employed catalytic electrodes. Nanostructuring of the electrode surface represents a powerful tool to increase the electrochemically active surface area of the electrodes. Moreover, it can also facilitate faster diffusive mass transport inside three-dimensional electrodes. This minireview describes recent trends in the development of synthesis routes for porous nanostructured electrode materials and discusses the respective important electrocatalytic applications. The use of structure-directing agents will play a decisive role in the design and synthesis of improved catalysts.

8.
Small ; 8(2): 298-309, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22095899

RESUMO

The synthesis and properties of a series of new structure-directing triblock copolymers with PEO-PB-PEO structure (PEO = poly(ethylene oxide) and PB = polybutadiene) and their application as superior pore-templates for the preparation of mesoporous titania coatings are reported. Starting from either TiCl4 or from preformed TiO2 nanocrystalline building blocks, mesoporous crystalline titanium oxide films with a significant degree of mesoscopic ordered pores are derived, and the pore size can be controlled by the molecular mass of the template polymer. Moreover, the triblock copolymers form stable micelles already at very low concentration, i.e., prior to solvent evaporation during the evaporation-induced self-assembly process (EISA). Consequently, the thickness of pore walls can be controlled independently of pore size by changing the polymer-to-precursor ratio. Thus, unprecedented control of wall thickness in the structure of mesoporous oxide coatings is achieved. In addition, the micelle formation of the new template polymers is sufficiently distinct from that of typical commercial PPO-PEO-PPO polymers (Pluronics; PPO = poly(propylene oxide)), so that a combination of both polymers facilitates bimodal porosity via dual micelle templating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...