Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 127, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685100

RESUMO

BACKGROUND: TP53, the most frequently mutated gene in human cancers, orchestrates a complex transcriptional program crucial for cancer prevention. While certain TP53-dependent genes have been extensively studied, others, like the recently identified RNF144B, remained poorly understood. This E3 ubiquitin ligase has shown potent tumor suppressor activity in murine Eµ Myc-driven lymphoma, emphasizing its significance in the TP53 network. However, little is known about its targets and its role in cancer development, requiring further exploration. In this work, we investigate RNF144B's impact on tumor suppression beyond the hematopoietic compartment in human cancers. METHODS: Employing TP53 wild-type cells, we generated models lacking RNF144B in both non-transformed and cancerous cells of human and mouse origin. By using proteomics, transcriptomics, and functional analysis, we assessed RNF144B's impact in cellular proliferation and transformation. Through in vitro and in vivo experiments, we explored proliferation, DNA repair, cell cycle control, mitotic progression, and treatment resistance. Findings were contrasted with clinical datasets and bioinformatics analysis. RESULTS: Our research underscores RNF144B's pivotal role as a tumor suppressor, particularly in lung adenocarcinoma. In both human and mouse oncogene-expressing cells, RNF144B deficiency heightened cellular proliferation and transformation. Proteomic and transcriptomic analysis revealed RNF144B's novel function in mediating protein degradation associated with cell cycle progression, DNA damage response and genomic stability. RNF144B deficiency induced chromosomal instability, mitotic defects, and correlated with elevated aneuploidy and worse prognosis in human tumors. Furthermore, RNF144B-deficient lung adenocarcinoma cells exhibited resistance to cell cycle inhibitors that induce chromosomal instability. CONCLUSIONS: Supported by clinical data, our study suggests that RNF144B plays a pivotal role in maintaining genomic stability during tumor suppression.


Assuntos
Instabilidade Genômica , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Nature ; 613(7942): 169-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544018

RESUMO

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Assuntos
Envelhecimento , Senescência Celular , Inflamação , Músculo Esquelético , Regeneração , Nicho de Células-Tronco , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Células-Tronco/fisiologia , Fibrose/fisiopatologia , Nicho de Células-Tronco/fisiologia , Transcriptoma , Cromatina/genética , Gerociência
4.
Nat Aging ; 2: 851-866, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36438588

RESUMO

Cellular senescence is a stable type of cell cycle arrest triggered by different stresses. As such, senescence drives age-related diseases and curbs cellular replicative potential. Here, we show that 3-deazaadenosine (3DA), an S-adenosyl homocysteinase (AHCY) inhibitor, alleviates replicative and oncogene-induced senescence. 3DA-treated senescent cells showed reduced global Histone H3 Lysine 36 trimethylation (H3K36me3), an epigenetic modification that marks the bodies of actively transcribed genes. By integrating transcriptome and epigenome data, we demonstrate that 3DA treatment affects key factors of the senescence transcriptional program. Remarkably, 3DA treatment alleviated senescence and increased the proliferative and regenerative potential of muscle stem cells from very old mice in vitro and in vivo. Moreover, ex vivo 3DA treatment was sufficient to enhance the engraftment of human umbilical cord blood (UCB) cells in immunocompromised mice. Together, our results identify 3DA as a promising drug enhancing the efficiency of cellular therapies by restraining senescence.


Assuntos
Senescência Celular , Histonas , Humanos , Camundongos , Animais , Histonas/genética , Senescência Celular/genética , Tubercidina/farmacologia , Epigênese Genética
5.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106654

RESUMO

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Assuntos
Antígenos CD34/metabolismo , Proliferação de Células , Autorrenovação Celular , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Fatores Etários , Animais , Cardiotoxinas/toxicidade , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/transplante , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/transplante , Transdução de Sinais , Nicho de Células-Tronco
6.
Nat Commun ; 11(1): 189, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31929511

RESUMO

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Assuntos
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Proteínas Nucleares/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Autofagia , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Nucleares/genética , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/prevenção & controle
7.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738589

RESUMO

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Assuntos
Autofagia/fisiologia , Senescência Celular , Células Satélites de Músculo Esquelético/citologia , Envelhecimento/patologia , Animais , Contagem de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Epigênese Genética , Homeostase , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Organelas/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Sarcopenia/patologia , Sarcopenia/prevenção & controle , Células Satélites de Músculo Esquelético/patologia
8.
Nature ; 506(7488): 316-21, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24522534

RESUMO

Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.


Assuntos
Envelhecimento/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Animais , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progéria/metabolismo , Progéria/patologia , Regeneração , Rejuvenescimento , Proteína do Retinoblastoma/metabolismo , Adulto Jovem
9.
Front Biosci ; 12: 4722-30, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485408

RESUMO

B-cell lymphoma-2 (Bcl-2) family members have been demonstrated to play a crucial role in the regulation of apoptosis as mediators in between the apical stimuli sensing steps and the executory mechanisms of apoptosis. Deregulation of their role may subvert the homeostasis of a given tissue and collaborate in the genesis of a myriad of diseases characterised by exacerbated or insufficient apoptosis, including diseases such as neurodegenerative diseases or cancer. Structural studies have defined homology regions shared by the members of the family that are responsible of the network of interactions established amongst the members of the family. These proteins usually form heterodimers between the so called antiapoptotic multidomain members and the proapoptotic BH3-only proteins. As a consequence, mitochondrial apoptogenic proteins are released to the cytoplasm and the apoptotic signal proceeds towards the final, execution phase of the apoptotic process. The high complexity of the family (more than 20 members have been isolated) makes the study of individual proteins difficult. Genetic approaches have revealed a high degree of redundancy in the family. Only a few proteins belonging to the antiapoptotic group have been proven to be essential for correct embryonic development. Genetic inactivation in mice shows a dramatic phenotype characterised by massive cell death in multiple tissues during embryogenesis, which leads from very early up to perinatal death. This genetic evidence proves the importance of the members of the family for the regulation of apoptosis in order to achieve the proper development and homeostasis of tissues and organs.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Camundongos , Camundongos Knockout , Modelos Teóricos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA