Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(4): 515-528, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518783

RESUMO

In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Saposinas/genética , Saposinas/metabolismo , Peixe-Zebra/metabolismo , Telencéfalo/metabolismo , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Adultas/metabolismo
2.
Sci Adv ; 9(35): eadg7519, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656795

RESUMO

The maintenance of neural stem cells (NSCs) in the adult brain depends on their activation frequency and division mode. Using long-term intravital imaging of NSCs in the zebrafish adult telencephalon, we reveal that apical surface area and expression of the Notch ligand DeltaA predict these NSC decisions. deltaA-negative NSCs constitute a bona fide self-renewing NSC pool and systematically engage in asymmetric divisions generating a self-renewing deltaAneg daughter, which regains the size and behavior of its mother, and a neurogenic deltaApos daughter, eventually engaged in neuronal production following further quiescence-division phases. Pharmacological and genetic manipulations of Notch, DeltaA, and apical size further show that the prediction of activation frequency by apical size and the asymmetric divisions of deltaAneg NSCs are functionally independent of Notch. These results provide dynamic qualitative and quantitative readouts of NSC lineage progression in vivo and support a hierarchical organization of NSCs in differently fated subpopulations.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Neurônios/fisiologia , Divisão Celular , Neurogênese
3.
Cell Stem Cell ; 28(8): 1457-1472.e12, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33823144

RESUMO

Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9-12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Encéfalo , Proliferação de Células , Retroalimentação , Peixe-Zebra
4.
Sci Adv ; 6(18): eaaz5424, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426477

RESUMO

The cellular basis and extent of neural stem cell (NSC) self-renewal in adult vertebrates, and their heterogeneity, remain controversial. To explore the functional behavior and dynamics of individual NSCs, we combined genetic lineage tracing, quantitative clonal analysis, intravital imaging, and global population assessments in the adult zebrafish telencephalon. Our results are compatible with a model where adult neurogenesis is organized in a hierarchy in which a subpopulation of deeply quiescent reservoir NSCs with long-term self-renewal potential generate, through asymmetric divisions, a pool of operational NSCs activating more frequently and taking stochastic fates biased toward neuronal differentiation. Our data further suggest the existence of an additional, upstream, progenitor population that supports the continuous generation of new reservoir NSCs, thus contributing to their overall expansion. Hence, we propose that the dynamics of vertebrate neurogenesis relies on a hierarchical organization where growth, self-renewal, and neurogenic functions are segregated between different NSC types.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Diferenciação Celular , Neurogênese , Telencéfalo , Peixe-Zebra
5.
FASEB J ; 28(2): 603-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24145721

RESUMO

The Notch signaling pathway is involved in liver development and regeneration. Here, we investigate the role of the 4 mammalian Notch paralogs in the regulation of hepatoblast proliferation and hepatocytic differentiation. Our model is based on bipotential mouse embryonic liver (BMEL) progenitors that can differentiate into hepatocytes or cholangiocytes in vitro and in vivo. BMEL cells were subjected to Notch antagonists or agonists. Blocking Notch activation with a γ-secretase inhibitor, at 50 µM for 48 h, reduced cell growth by 50%. S-phase entry was impaired, but no apoptosis was induced. A systematic paralog-specific strategy was set using lentiviral transduction with constitutively active forms of each Notch receptor along with inhibition of endogenous Notch signaling. This assay demonstrates that proliferation of BMEL cells requires Notch2 and Notch4 activity, resulting in significant down-regulation of p27(Kip1) and p57(Kip2) cyclin-dependent kinase inhibitors. Conversely, Notch3-expressing cells proliferate less and express 3-fold higher levels of p57(Kip2). The Notch3 cells present a hepatocyte-like morphology, enhanced multinucleation, and a ploidy shift. Moreover, Notch3 activity is conducive to hepatocytic differentiation in vitro, while its paralogs impede this fate. Our study provides the first evidence of a functional diversity among the mammalian Notch homologues in the proliferation and hepatocytic-lineage commitment of liver progenitors.


Assuntos
Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Receptores Notch/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Imunofluorescência , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Notch/genética
6.
J Biol Chem ; 286(21): 18720-30, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21464124

RESUMO

The Notch pathway is involved in cell-cell signaling during development and adulthood from invertebrates to higher eukaryotes. Activation of the Notch receptor by its ligands relies upon a multi-step processing. The extracellular part of the receptor is removed by a metalloprotease of the ADAM family and the remaining fragment is cleaved within its transmembrane domain by a presenilin-dependent γ-secretase activity. γ-Secretase processing of Notch has been shown to depend upon monoubiquitination as well as clathrin-mediated endocytosis (CME). We show here that AAK1, the adaptor-associated kinase 1, directly interacts with the membrane-tethered active form of Notch released by metalloprotease cleavage. Active AAK1 acts upstream of the γ-secretase cleavage by stabilizing both the membrane-tethered activated form of Notch and its monoubiquitinated counterpart. We propose that AAK1 acts as an adaptor for Notch interaction with components of the clathrin-mediated pathway such as Eps15b. Moreover, transfected AAK1 increases the localization of activated Notch to Rab5-positive endocytic vesicles, while AAK1 depletion or overexpression of Numb, an inhibitor of the pathway, interferes with this localization. These results suggest that after ligand-induced activation of Notch, the membrane-tethered form can be directed to different endocytic pathways leading to distinct fates.


Assuntos
Endocitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Receptores Notch/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...