Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Obstet Gynecol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432413

RESUMO

OBJECTIVE: Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). METHODS: This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. RESULTS: Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). CONCLUSION: Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.

2.
Neurotrauma Rep ; 5(1): 95-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404523

RESUMO

Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB), which may exacerbate neuroinflammation post-injury. Few translational studies have examined BBB dysfunction and subsequent neuroinflammation post-TBI in juveniles. We hypothesized that BBB dysfunction positively predicts microglial activation and that vulnerability to BBB dysfunction and associated neuroinflammation are dependent on age at injury. Post-natal day (PND)17 and PND35 rats (n = 56) received midline fluid percussion injury or sham surgery, and immunoglobulin-G (IgG) stain was quantified as a marker of extravasated blood in the brain and BBB dysfunction. We investigated BBB dysfunction and the microglial response in the hippocampus, hypothalamus, and motor cortex relative to age at injury and days post-injury (DPI; 1, 7, and 25). We measured the morphologies of ionized calcium-binding adaptor molecule 1-labeled microglia using cell body area and perimeter, microglial branch number and length, end-points/microglial cell, and number of microglia. Data were analyzed using generalized hierarchical models. In PND17 rats, TBI increased levels of IgG compared to shams. Independent of age at injury, IgG in TBI rats was higher at 1 and 7 DPI, but resolved by 25 DPI. TBI activated microglia (more cells and fewer end-points) in PND35 rats compared to respective shams. Independent of age at injury, TBI induced morphological changes indicative of microglial activation, which resolved by 25 DPI. TBI rats had fewer cells and end-points per cell at 1 and 7 DPI than 25 DPI. Independent of TBI, PND17 rats had larger, more activated microglia than PND35 rats; PND17 TBI rats had larger cell body areas and perimeters than PND35 TBI rats. Importantly, we found support in both ages that IgG quantification predicted microglial activation after TBI. The number of microglia increased with increasing IgG, whereas branch length decreased with increasing IgG, which together indicate microglial activation. Our results suggest that stabilization of the BBB after pediatric TBI may be an important therapeutic strategy to limit neuroinflammation and promote recovery.

3.
J Endocrinol ; 260(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855319

RESUMO

Traumatic brain injury (TBI) can damage the hypothalamus and cause improper activation of the growth hormone (GH) axis, leading to growth hormone deficiency (GHD). GHD is one of the most prevalent endocrinopathies following TBI in adults; however, the extent to which GHD affects juveniles remains understudied. We used postnatal day 17 rats (n = 83), which model the late infantile/toddler period, and assessed body weights, GH levels, and number of hypothalamic somatostatin neurons at acute (1, 7 days post injury (DPI)) and chronic (18, 25, 43 DPI) time points. We hypothesized that diffuse TBI would alter circulating GH levels because of damage to the hypothalamus, specifically somatostatin neurons. Data were analyzed with generalized linear and mixed effects models with fixed effects interactions between the injury and time. Despite similar growth rates over time with age, TBI rats weighed less than shams at 18 DPI (postnatal day 35; P = 0.03, standardized effect size [d] = 1.24), which is around the onset of puberty. Compared to shams, GH levels were lower in the TBI group during the acute period (P = 0.196; d = 12.3) but higher in the TBI group during the chronic period (P = 0.10; d = 52.1). Although not statistically significant, TBI-induced differences in GH had large standardized effect sizes, indicating biological significance. The mean number of hypothalamic somatostatin neurons (an inhibitor of GH) positively predicted GH levels in the hypothalamus but did not predict GH levels in the somatosensory cortex. Understanding TBI-induced alterations in the GH axis may identify therapeutic targets to improve the quality of life of pediatric survivors of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Hormônio do Crescimento Humano , Animais , Ratos , Hormônio do Crescimento , Qualidade de Vida , Somatostatina
4.
Obstet Gynecol ; 142(5): 1208-1216, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562044

RESUMO

OBJECTIVE: To identify conditions on a reproductive carrier screening panel with the potential for carrier manifestations during pregnancy and review the implications for obstetric care. METHODS: This was a retrospective cross-sectional study of consecutive samples from female patients aged 18-55 years submitted to a commercial laboratory for a 274-gene carrier screening panel (January 2020 to September 2022). A literature review was performed to identify genes on the panel with potential for pregnancy complications in carriers. Carrier expression and published recommendations for clinical management were reviewed. RESULTS: We identified 12 genes with potential for carrier manifestations during pregnancy based on reports in the literature: nine with manifestations irrespective of the fetal genetic status ( ABCB11 , COL4A3 , COL4A4 , COL4A5 , DMD , F9 , F11 , GLA , and OTC ) and three ( CPT1A , CYP19A1 , and HADHA ) with manifestations only if the fetus is affected by the condition. Manifestations included cardiomyopathy, hemorrhage, gestational hypertensive disorders, cholestasis of pregnancy, acute fatty liver, hyperammonemic crisis, and maternal virilization. Published recommendations for carrier management were identified for 11 of the 12 genes. Of 91,637 tests performed during the study period, a pathogenic or likely pathogenic variant was identified in 2,139 (2.3%), giving a carrier frequency for any of the 12 genes of 1 in 43 (95% CI 1/41-45) 1,826 (2.0%) of the study population were identified as carriers for one of the nine genes with the potential for carrier manifestations irrespective of an affected or unaffected fetus. CONCLUSION: Approximately 1 in 40 female patients were identified as carriers for a condition with potential for maternal manifestations in pregnancy, including some serious or even life-threatening complications. Obstetric care professionals should be aware of the possibility of pregnancy complications among carriers and the available recommendations for management. FUNDING SOURCE: This study was funded by Natera, Inc.


Assuntos
Saúde Materna , Complicações na Gravidez , Gravidez , Humanos , Feminino , Estudos Retrospectivos , Estudos Transversais , Cuidado Pré-Natal , Triagem de Portadores Genéticos , Complicações na Gravidez/genética
5.
Neurotrauma Rep ; 4(1): 284-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139183

RESUMO

To investigate microglial mechanisms in central and peripheral inflammation after experimental traumatic brain injury (TBI), we inhibited the colony-stimulating factor-1 receptor (CSF-1R) with PLX5622 (PLX). We hypothesized that microglia depletion would attenuate central inflammation acutely with no effect on peripheral inflammation. After randomization, male mice (n = 105) were fed PLX or control diets (21 days) and then received midline fluid percussion injury or sham injury. Brain and blood were collected at 1, 3, or 7 days post-injury (DPI). Immune cell populations were quantified in the brain and blood by flow cytometry. Cytokines (interleukin [IL]-6, IL-1ß, tumor necrosis factor-α, interferon-γ, IL-17A, and IL-10) were quantified in the blood using a multi-plex enzyme-linked immunosorbent assay. Data were analyzed using Bayesian multi-variate, multi-level models. PLX depleted microglia at all time points and reduced neutrophils in the brain at 7 DPI. PLX also depleted CD115+ monocytes, reduced myeloid cells, neutrophils, and Ly6Clow monocytes in blood, and elevated IL-6. TBI induced a central and peripheral immune response. TBI elevated leukocytes, microglia, and macrophages in the brain and elevated peripheral myeloid cells, neutrophils, Ly6Cint monocytes, and IL-1ß in the blood. TBI lowered peripheral CD115+ and Ly6Clow monocytes in the blood. TBI PLX mice had fewer leukocytes and microglia in the brain at 1 DPI, with elevated neutrophils at 7 DPI compared to TBI mice on a control diet. TBI PLX mice also had fewer peripheral myeloid cells, CD115+, and Ly6Clow monocytes in the blood at 3 DPI, but elevated Ly6Chigh, Ly6Cint, and CD115+ monocyte populations at 7 DPI, compared to TBI mice on a control diet. TBI PLX mice had elevated proinflammatory cytokines and lower anti-inflammatory cytokines in the blood at 7 DPI compared to TBI mice on a control diet. CSF-1R inhibition reduced the immune response to TBI at 1 and 3 DPI, but elevated peripheral inflammation at 7 DPI.

6.
Biology (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009868

RESUMO

Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.

7.
Biology (Basel) ; 11(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35453799

RESUMO

The objective of this study was to determine the prevalence of sleep-wake disturbances (SWD) following pediatric traumatic brain injury (TBI), and to examine characteristics of TBI and patient demographics that might be predictive of subsequent SWD development. This single-institution retrospective study included patients diagnosed with a TBI during 2008-2019 who also had a subsequent diagnosis of an SWD. Data were collected using ICD-9/10 codes for 207 patients and included the following: age at initial TBI, gender, TBI severity, number of TBIs diagnosed prior to SWD diagnosis, type of SWD, and time from initial TBI to SWD diagnosis. Multinomial logit and negative-binomial models were fit to investigate whether the multiple types of SWD and the time to onset of SWD following TBI could be predicted by patient variables. Distributions of SWD diagnosed after TBI were similar between genders. The probability of insomnia increased with increasing patient age. The probability of 'difficulty sleeping' was highest in 7-9 year-old TBI patients. Older TBI patients had shorter time to SWD onset than younger patients. Patients with severe TBI had the shortest time to SWD onset, whereas patients with mild or moderate TBI had comparable times to SWD onset. Multiple TBI characteristics and patient demographics were predictive of a subsequent SWD diagnosis in the pediatric population. This is an important step toward increasing education among providers, parents, and patients about the risk of developing SWD following TBI.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35237767

RESUMO

There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.

9.
J Interpers Violence ; 37(9-10): NP6785-NP6812, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33092447

RESUMO

Over half of fatal pediatric traumatic brain injuries are estimated to be the result of physical abuse, i.e., abusive head trauma (AHT). Although intimate partner violence (IPV) is a well-established risk for child maltreatment, little is known about IPV as an associated risk factor specifically for AHT. We performed a single-institution, retrospective review of all patients (0-17 years) diagnosed at a Level 1 pediatric trauma center with head trauma who had been referred to an in-hospital child protection team for suspicion of AHT between 2010 and 2016. Data on patient demographics, hospitalization, injury, family characteristics, sociobehavioral characteristics, physical examination, laboratory findings, imaging, discharge, and forensic determination of AHT were extracted from the institution's forensic registry. Descriptive statistics (mean, median), chi-square and Mann-Whitney U tests were used to compare patients with fatal head injuries to patients with nonfatal head injuries by clinical characteristics, family characteristics, and forensic determination. Multiple logistic regression was used to estimate adjusted odds ratios for the presence of IPV as an associated risk of AHT while controlling for other clinical and family factors. Of 804 patients with suspicion for AHT in the forensic registry, there were 240 patients with a forensic determination of AHT; 42 injuries were fatal. There were 101 families with a reported history of IPV; 64.4% of patients in families with reported IPV were <12 months of age. IPV was associated with a twofold increase in the risk of AHT (Exp(ß) = 2.3 [p = .02]). This study confirmed IPV was an associated risk factor for AHT in a single institution cohort of pediatric patients with both fatal and nonfatal injuries. Identifying IPV along with other family factors may improve detection and surveillance of AHT in medical settings and help reduce injury, disability, and death.


Assuntos
Maus-Tratos Infantis , Traumatismos Craniocerebrais , Violência por Parceiro Íntimo , Criança , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/diagnóstico , Traumatismos Craniocerebrais/epidemiologia , Humanos , Lactente , Abuso Físico , Fatores de Risco
10.
J Neurotrauma ; 38(20): 2862-2880, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34155930

RESUMO

Intimate partner violence (IPV) increases risk of traumatic brain injury (TBI). Physical assaults increase in frequency and intensity during pregnancy. The consequences of TBI during pregnancy (gravida TBI; gTBI) on offspring development is unknown, for which stress and inflammation during pregnancy worsen fetal developmental outcomes. We hypothesized that gTBI would lead to increased anxiety- and depression-related behavior, altered inflammatory responses and gut pathology, and distorted brain circuitry in mixed-sex offspring compared to mice born to control mothers. Pregnant dams received either diffuse TBI or sham injury (control) 12 days post-coitum. We found that male gTBI offspring were principal drivers of the gTBI effects on health, physiology, and behavior. For example, male, but not female, gTBI offspring weighed significantly less at weaning compared to male control offspring. At post-natal day (PND) 28, gTBI offspring had significantly weaker intralaminar connectivity onto layer 5 pre-frontal pyramidal neurons compared to control offspring. Neurological performance on anxiety-like behaviors was decreased, with only marginal differences in depressive-like behaviors, for gTBI offspring compared to control offspring. At PND42 and PND58, circulating neutrophil and monocyte populations were significantly smaller in gTBI male offspring than control male offspring. In response to a subsequent inflammatory challenge at PND75, gTBI offspring had significantly smaller circulating neutrophil populations than control offspring. Anxiety-like behaviors persisted during the immune challenge in gTBI offspring. However, spleen immune response and gut histology showed no significant differences between groups. The results compel further studies to determine the full extent of gTBI on fetal and maternal outcomes.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Complicações na Gravidez/imunologia , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/psicologia , Depressão/etiologia , Depressão/psicologia , Feminino , Saúde , Inflamação/imunologia , Contagem de Leucócitos , Masculino , Camundongos , Vias Neurais/patologia , Gravidez , Complicações na Gravidez/psicologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Células Piramidais/patologia , Caracteres Sexuais , Baço/imunologia
11.
Front Neurol ; 12: 804139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111130

RESUMO

Few translational studies have examined how age-at-injury affects the glial response to traumatic brain injury (TBI). We hypothesized that rats injured at post-natal day (PND) 17 would exhibit a greater glial response, that would persist into early adulthood, compared to rats injured at PND35. PND17 and PND35 rats (n = 75) received a mild to moderate midline fluid percussion injury or sham surgery. In three cortical regions [peri-injury, primary somatosensory barrel field (S1BF), perirhinal], we investigated the glial response relative to age-at-injury (PND17 or PND35), time post-injury (2 hours, 1 day, 7 days, 25 days, or 43 days), and post-natal age, such that rats injured at PND17 or PND35 were compared at the same post-natal-age (e.g., PND17 + 25D post-injury = PND42; PND35 + 7D post-injury = PND42). We measured Iba1 positive microglia cells (area, perimeter) and quantified their activation status using skeletal analysis (branch length/cell, mean processes/cell, cell abundance). GFAP expression was examined using immunohistochemistry and pixel analysis. Data were analyzed using Bayesian multivariate multi-level models. Independent of age-at-injury, TBI activated microglia (shorter branches, fewer processes) in the S1BF and perirhinal cortex with more microglia in all regions compared to uninjured shams. TBI-induced microglial activation (shorter branches) was sustained in the S1BF into early adulthood (PND60). Overall, PND17 injured rats had more microglial activation in the perirhinal cortex than PND35 injured rats. Activation was not confounded by age-dependent cell size changes, and microglial cell body sizes were similar between PND17 and PND35 rats. There were no differences in astrocyte GFAP expression. Increased microglial activation in PND17 brain-injured rats suggests that TBI upregulates the glial response at discrete stages of development. Age-at-injury and aging with an injury are translationally important because experiencing a TBI at an early age may trigger an exaggerated glial response.

12.
Hippocampus ; 31(2): 221-231, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33241879

RESUMO

Past studies find that chronic stress alters inhibitory, GABAergic circuitry of neurons in distinct hippocampal subregions. Less clear is whether these effects persist weeks after chronic stress ends, and whether these effects involve changes in the total number of hippocampal GABAergic neurons or modulates the function of specific GABAergic subtypes. A transgenic mouse line (VGAT:Cre Ai9) containing an indelible marker for GABAergic neurons (tdTomato) throughout the brain was used to determine whether chronic stress alters total GABAergic neuronal number or the expression of two key GABAergic cell subtypes, calretinin expressing (CR+) and somatostatin expressing (SOM+) neurons, and whether these changes endure weeks later. Male and female mice were chronically stressed in wire mesh restrainers for 6h/d/21d (Str) or not (Con), and then allowed a 3 week rest period (Str-Rest) and compared to those without a rest period (Str-NoRest). Epifluorescent microscope images of immunohistochemistry-processed brains were quantified to estimate the total number of fluorescently-labeled hippocampal GABAergic neurons and the proportion that were CR+ or SOM+. Neither chronic stress nor sex altered the total number of GABAergic cells. In contrast, chronic stress reduced the expression of CR+ in the CA3 region of the hippocampus in both males and females, with robust reductions in the DG region of males, but not females, and these changes reversed following a rest period. Chronic stress also reduced the proportion of hippocampal SOM+ neurons and this reduction persisted even with a rest period. These results show chronic stress dynamically reduced CR expression without changing total inhibitory neuronal number and point to CR as a potential new lead to understand mechanisms by which chronic stress alters hippocampal function.


Assuntos
Hipocampo , Somatostatina , Animais , Calbindina 2/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Somatostatina/metabolismo
13.
J Pediatr Surg ; 56(2): 390-396, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33220974

RESUMO

BACKGROUND: Abusive head trauma (AHT) is the leading cause traumatic death in children ≤5 years of age. AHT remains seriously under-surveilled, increasing the risk of subsequent injury and death. This study assesses the clinical and social risks associated with fatal and non-fatal AHT. METHODS: A single-institution, retrospective review of suspected AHT patients ≤5 years of age between 2010 and 2016 using a prospective hospital forensic registry data yielded demographic, clinical, family, psycho-social and other follow-up information. Descriptive statistics were used to look for differences between patients with AHT and accidental head trauma. Logistic regression estimated the adjusted odds ratios (AOR) for AHT. A receiver operating characteristic (ROC) curve was created to calculate model sensitivity and specificity. RESULTS: Forensic evaluations of 783 children age ≤5 years with head trauma met the inclusion criteria; 25 were fatal with median[IQR] age 23[4.5-39.0] months. Of 758 non-fatal patients, age was 7[3.0-11.0] months; 59.5% male; 435 patients (57.4%) presented with a skull fracture, 403 (53.2%) with intracranial hemorrhage. Ultimately 242 (31.9%) were adjudicated AHT, 335(44.2%) were accidental, 181 (23.9%) were undetermined. Clinical factors increasing the risk of AHT included multiple fractures (Exp(ß) = 9.9[p = 0.001]), bruising (Expß = 5.7[p < 0.001]), subdural blood (Exp(ß) = 5.3[p = 0.001]), seizures (Exp(ß) = 4.9[p = 0.02]), lethargy/unresponsiveness (Exp(ß) = 2.24[p = 0.02]), loss of consciousness (Exp(ß) = 4.69[p = 0.001]), and unknown mechanism of injury (Exp(ß) = 3.9[p = 0.001]); skull fracture reduced the risk of AHT by half (Exp(ß) = 0.5[p = 0.011]). Social risks factors included prior police involvement (Exp(ß) = 5.9[p = 0.001]), substance abuse (Exp(ß) = 5.7[p = .001]), unknown number of adults in the home (Exp(ß) = 4.1[p = 0.001]) and intimate partner violence (Exp(ß) = 2.3[p = 0.02]). ROC area under the curve (AUC) = 0.90([95% CI = 0.86-0.93] p = .001) provides 73% sensitivity; 91% specificity. CONCLUSIONS: To improve surveillance of AHT, interviews should include and consider social factors including caregiver/household substance abuse, intimate partner violence, prior police involvement and household size. An unknown number of adults in home is associated with an increased risk of AHT. STUDY TYPE/LEVEL OF EVIDENCE: Prognostic, Level III.


Assuntos
Maus-Tratos Infantis , Traumatismos Craniocerebrais , Criança , Maus-Tratos Infantis/diagnóstico , Pré-Escolar , Traumatismos Craniocerebrais/diagnóstico , Traumatismos Craniocerebrais/epidemiologia , Traumatismos Craniocerebrais/etiologia , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco
14.
Front Neurosci ; 14: 894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982677

RESUMO

Traumatic brain injury (TBI) and Alzheimer's disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In this review, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention.

15.
Neurotrauma Rep ; 1(1): 113-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223536

RESUMO

Traumatic brain injury (TBI) survivors suffer from a range of morbidities, including post-traumatic endocrinopathies that can cause physical and mental changes in patients, greatly compromising quality of life. This study tested the hypothesis that mild and moderate diffuse TBI leads to chronic deficiencies in corticosterone (CORT) regulation following repeated exposure to restraint stress over time. Young adult male rats (n = 9-11/group) were subjected to mild or moderate TBI induced by midline fluid percussion injury (mFPI) or control sham surgery. At 6 and 24 h post-injury, both mild and moderate TBI resulted in elevated resting plasma CORT levels compared with uninjured shams. Independent of TBI severity, all rats had lower resting plasma CORT levels at 7, 14, 28, and 54 days post-injury compared with pre-surgery baseline CORT. Circulating levels of CORT were also evaluated under restraint stress and in response to dexamethasone (DEX), a synthetic glucocorticoid. Independent of TBI severity, restraint stress elevated CORT at 30, 60, and 90 min post-stressor initiation at all post-injury time-points. A blunted CORT response to restraint stress was observed with lower CORT levels after restraint at 28 and 54 days compared with 7 days post-injury (DPI), indicative of habituation to the stressor. A high dose of DEX lowered CORT levels at 90 min post-restraint stress initiation compared with low-dose DEX, independent of TBI severity. These results support TBI-induced CORT dysregulation at acute time-points, but additional studies that investigate the onset and progression of endocrinopathies, controlling for habituation to repeated restraint stress, are needed to inform the diagnosis and treatment of such morbidities in TBI survivors.

16.
Horm Behav ; 118: 104656, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862208

RESUMO

The influence of estrogens on modifying cognition has been extensively studied, revealing that a wide array of factors can significantly impact cognition, including, but not limited to, subject age, estrogen exposure duration, administration mode, estrogen formulation, stress history, and progestogen presence. Less known is whether long-term, extended exposure to estrogens would benefit or otherwise impact cognition. The present study examined the effects of 17ß-estradiol (E2) exposure for seven months, beginning in late adulthood and continuing into middle age, using a regimen of cyclic exposure (bi-monthly subcutaneous injection of 10 µg E2), or Cyclic+Tonic exposure (bi-monthly subcutaneous injection of 10 µg E2 + Silastic capsules of E2) in ovariectomized female Fischer-344-CDF rats. Subjects were tested on a battery of learning and memory tasks. All groups learned the water radial-arm maze (WRAM) and Morris water maze tasks in a similar fashion, regardless of hormone treatment regimen. In the asymptotic phase of the WRAM, rats administered a Cyclic+Tonic E2 regimen showed enhanced performance when working memory was taxed compared to Vehicle and Cyclic E2 groups. Assessment of spatial memory on object placement and object recognition was not possible due to insufficient exploration of objects; however, the Cyclic+Tonic group showed increased total time spent exploring all objects compared to Vehicle-treated animals. Overall, these data demonstrate that long-term Cyclic+Tonic E2 exposure can result in some long-term cognitive benefits, at least in the spatial working memory domain, in a surgically menopausal rat model.


Assuntos
Envelhecimento/efeitos dos fármacos , Estradiol/administração & dosagem , Memória de Curto Prazo/efeitos dos fármacos , Ovariectomia , Memória Espacial/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Estradiol/farmacologia , Feminino , Injeções Subcutâneas , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
17.
Behav Brain Res ; 376: 112184, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31473282

RESUMO

This study investigated the role of the dorsal hippocampus (dHPC) in the temporal entrainment of behavior, while addressing limitations of previous evidence from peak procedure experiments. Rats were first trained on a switch-timing task in which food was obtained from one of two concurrently available levers; one lever was effective after 8 s and the other after 16  s. After performance stabilized, rats underwent either bilateral NMDA lesions of the dHPC or sham lesions. After recovery, switch-timing training resumed. In a subsequent condition, the switch-timing task was modified such that food was available after either 8 or 32 s. Although dHPC lesions had subtle and complex effects on when rats stopped seeking for food at the 8-s lever (departures), it more systematically reduced the time when rats started seeking for food at the 16-s and 32-s lever (switches). No systematic effect of dHPC lesions were observed on the coefficient of quartile variation (normalized dispersion) of latencies to switch. Within the context of the pacemaker-accumulator framework of interval timing, these findings suggest that partially or wholly independent mechanisms control the initiation and termination of timed responses, and that the dHPC is primarily involved in encoding the time to start responding.


Assuntos
Condicionamento Operante/fisiologia , Hipocampo/fisiologia , Tempo de Reação/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Percepção do Tempo/fisiologia
18.
Front Neurol ; 10: 1410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038466

RESUMO

Traumatic brain injury (TBI) in children can result in long-lasting social, cognitive, and neurological impairments. In adults, TBI can lead to endocrinopathies (endocrine system disorders), but this is infrequently reported in children. Untreated endocrinopathies can elevate risks of subsequent health issues, such that early detection in pediatric TBI survivors can initiate clinical interventions. To understand the risk of endocrinopathies following pediatric TBI, we identified patients who had experienced a TBI and subsequently developed a new-onset hypothalamic regulated endocrinopathy (n = 498). We hypothesized that pediatric patients who were diagnosed with a TBI were at higher risk of being diagnosed with a central endocrinopathy than those without a prior diagnosis of TBI. In our epidemiological assessment, we identified pediatric patients enrolled in the Arizona Health Care Cost Containment System (AHCCCS) from 2008 to 2014 who were diagnosed with one of 330 TBI International Classification of Diseases (ICD)-9 codes and subsequently diagnosed with one of 14 central endocrinopathy ICD-9 codes. Additionally, the ICD-9 code data from over 600,000 Arizona pediatric patients afforded an estimate of the incidence, prevalence, relative risk, odds ratio, and number needed to harm, regarding the development of a central endocrinopathy after sustaining a TBI in Arizona Medicaid pediatric patients. Children with a TBI diagnosis had 3.22 times the risk of a subsequent central endocrine diagnosis compared with the general population (±0.28). Pediatric AHCCCS patients with a central endocrine diagnosis had 3.2-fold higher odds of a history of a TBI diagnosis than those without an endocrine diagnosis (±0.29). Furthermore, the number of patients with a TBI diagnosis for one patient to receive a diagnosis of a central endocrine diagnosis was 151.2 (±6.12). Female subjects were more likely to present with a central endocrine diagnosis after a TBI diagnosis compared to male subjects (64.1 vs. 35.9%). These results are the first state-wide epidemiological study conducted to determine the risk of developing a hypothalamic-pituitary disorder after a TBI in the pediatric population. Our results contribute to a body of knowledge demonstrating a TBI etiology for idiopathic endocrine disorders, and thus advise physicians with regard to TBI follow-up care that includes preventive screening for endocrine disorders.

19.
J Vis Exp ; (139)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30295667

RESUMO

Histology and immunohistochemistry are routine methods of analysis to visualize microscopic anatomy and localize proteins within biological tissue. In neuroscience, as well as a plethora of other scientific fields, these techniques are used. Immunohistochemistry can be done on slide mounted tissue or free-floating sections. Preparing slide-mounted samples is a time intensive process. The following protocol for a technique, called the Megabrain, reduced the time taken to cryosection and mount brain tissue by up to 90% by combining multiple brains into a single frozen block. Furthermore, this technique reduced variability seen between staining rounds, in a large histochemical study. The current technique has been optimized for using rodent brain tissue in downstream immunohistochemical analyses; however, it can be applied to different scientific fields that use cryosectioning.


Assuntos
Encéfalo/patologia , Crioultramicrotomia/métodos , Animais , Roedores
20.
Neuroscience ; 388: 330-346, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076998

RESUMO

The brain is capable of improving from a chronically stressed state. The hippocampus in particular appears to "recover" from chronic stress-induced morphological and functional deficits following a post-stress rest period of several weeks. We previously found that hippocampal brain-derived neurotrophic factor (BDNF) was necessary for spatial ability to improve following a post-stress rest period. The following studies are the first to investigate the involvement of BDNF and its TrkB receptor on the recovery process following the end of chronic stress, as it pertains to hippocampal dendritic retraction and spatial memory deficits. In the first study, hippocampal BDNF was downregulated via RNA interference and then hippocampal CA3 and CA1 dendritic complexity were evaluated following chronic stress and a post-stress rest period in male Sprague-Dawley rats. Downregulating hippocampal BDNF prevented the enhancement of CA3 apical dendritic complexity following the rest period. Moreover, chronic stress and downregulated BDNF in the post-stress rest group led to regionally specific enhancements in CA1 dendritic complexity. In the second study, we tested whether the TrkB receptor was involved by administering daily systemic injections of ANA-12, a TrkB receptor antagonist, during the three-week post-stress rest period. ANA-12 prevented the improvement in spatial ability and CA3 apical dendritic complexity following the post-stress rest period. These data demonstrate that hippocampal BDNF acting via its TrkB receptor is necessary during the post-stress rest period in order to improve the impaired hippocampal structural and cognitive outcomes that occur in response to chronic stress.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA3 Hipocampal/metabolismo , Transtornos da Memória/metabolismo , Receptor trkB/metabolismo , Memória Espacial/fisiologia , Estresse Psicológico/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Doença Crônica , Dendritos/metabolismo , Dendritos/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores , Descanso , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...