Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(30): 18347-18360, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880699

RESUMO

Highly accurate ab initio electron-propagator and coupled-cluster methods are employed to predict the vertical electron attachment energies (VEAEs) of NH4+(H2O)n (n = 1-4) cationic clusters. The VEAEs decrease with increasing n and the corresponding Dyson orbitals are diffused over peripheral, non-hydrogen bonded protons. Clusters formed from NH4- double Rydberg anions (DRAs) and stabilized by hydrogen bonding or electrostatic interactions are studied through calculations on NH4-(H2O)n complexes and are compared with more stable H-(NH3)(H2O)n isomers. Structures that have cationic and anionic congeners have notable changes in geometry. For all values of n, the hydride-molecule complex H-(NH3)(H2O)n is always the most stable, with large vertical electron detachment energies (VEDEs). NH4-(H2O)n DRA isomers are predicted to have VEDEs that correspond to energetically well-separated peaks in an anion photoelectron spectrum. Less stable DRA isomers display proton donation from the tetrahedral NH4- fragment to water molecules and VEDEs close to those of previously discovered DRAs. The most stable DRA isomers feature tetrahedral NH4- fragments without H bridges to water molecules and VEDEs that increase with n. Dyson orbitals of NH4-(H2O)n DRAs occupy regions beyond the exterior non-bridging O-H and N-H bonds. Thus, the Rydberg electrons in the uncharged Rydberg radicals and DRAs are held near the outer protons of the water and ammonia molecules. Several bound low-lying excited states of the doublet Rydberg radicals have single electrons occupying delocalized Dyson orbitals of s-like, p-like, d-like, or f-like nodal patterns with the following Aufbau principle: 1s, 1p, 1d, 2s, 2p, 1f.

3.
J Chem Phys ; 155(5): 051102, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364362

RESUMO

The complete-active-space (CAS) extended Koopmans theorem (EKT) method is defined as a special case of the EKT in which the reference state is a CAS configuration interaction (CI) expansion and the electron removal operator acts only on the active orbitals. With these restrictions, the EKT is equivalent to the CI procedure involving all hole-state configurations derived from the active space of the reference wavefunction and has properties analogous to those of the original Koopmans theorem. The equivalence is used to demonstrate in a transparent manner that the first ionization energy predicted by the EKT is in general not exact, i.e., not equal to the difference between the full CI energies of the neutral and the ion, but can approach the full CI result with arbitrary precision even within a finite basis set. The findings also reconcile various statements about the EKT found in the literature.

4.
J Chem Phys ; 154(23): 234304, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241254

RESUMO

Ab initio electron propagator methods are employed to predict the vertical electron attachment energies (VEAEs) of OH3 +(H2O)n clusters. The VEAEs decrease with increasing n, and the corresponding Dyson orbitals are diffused over exterior, non-hydrogen bonded protons. Clusters formed from OH3 - double Rydberg anions (DRAs) and stabilized by hydrogen bonding or electrostatic interactions between ions and polar molecules are studied through calculations on OH3 -(H2O)n complexes and are compared with more stable H-(H2O)n+1 isomers. Remarkable changes in the geometry of the anionic hydronium-water clusters with respect to their cationic counterparts occur. Rydberg electrons in the uncharged and anionic clusters are held near the exterior protons of the water network. For all values of n, the anion-water complex H-(H2O)n+1 is always the most stable, with large vertical electron detachment energies (VEDEs). OH3 -(H2O)n DRA isomers have well separated VEDEs and may be visible in anion photoelectron spectra. Corresponding Dyson orbitals occupy regions beyond the peripheral O-H bonds and differ significantly from those obtained for the VEAEs of the cations.

5.
J Phys Chem A ; 125(17): 3664-3680, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33886321

RESUMO

Adiabatic and vertical ionization energies corresponding to the X̃ A12, à B22, and B̃ A22 final states of SO2+, O3+, and S3+ have been calculated with a variety of electron-propagator and coupled-cluster methods. The BD-T1 electron-propagator method for vertical ionization energies and coupled-cluster adiabatic and zero-point corrections yield agreement with experiment to within 0.1 eV in all cases but one. The remaining discrepancies for the à B22 state of SO2+ indicate a need for higher levels of theory in determining cationic minima and their accompanying vibrational frequencies. Predictions for the still unobserved à B22 and B̃ A22 final states of S3+ are included. To account for increased biradical character in O3 and S3, highly correlated reference states are required to produce the correct order of final states. Electron correlation plays a subtle role in determining the contours of the Dyson orbitals obtained with BD-T1 and NR2 electron-propagator calculations.

6.
Phys Chem Chem Phys ; 22(6): 3273-3280, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32003384

RESUMO

We have prepared the hydrogen sulfide trimer and tetramer anions, (H2S)3- and (H2S)4-, measured their anion photoelectron spectra, and applied high-level quantum chemical calculations to interpret the results. The sharp peaks at low electron binding energies in their photoelectron spectra and their diffuse Dyson orbitals are evidence for them both being dipole-bound anions. While the dipole moments of the neutral (H2S)3 and (H2S)4 clusters are small, the excess electron induces structural distortions that enhance the charge-dipolar attraction and facilitate the binding of diffuse electrons.

7.
J Phys Chem A ; 124(3): 505-512, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31638812

RESUMO

Positively charged or neutral metal ammonia complexes can form molecular species called solvated electron precursors (SEPs) that accommodate peripheral electrons in approximately hydrogenic diffuse orbitals. This work expands the notion of SEPs to metal ammonia complexes wherein a second coordination shell with 12 ammonia molecules is attached to M(NH3)4 (M = Li, Be+, B2+) SEPs via hydrogen bonding. In such complexes, denoted M(NH3)4@12NH3, the 12 outer ammonia molecules displace the peripheral electrons even further away from the first shell of ammonia molecules. We have benchmarked several density functional methods against CCSD(T) results and found that CAM-B3LYP provides the best M(NH3)4@12NH3 structures. The electron attachment energies of the closed-shell cores calculated with electron-propagator methods and the corresponding Dyson orbitals reveal the Aufbau principle for the ground and excited states of M(NH3)4@12NH3 to be 1s, 1p, 1d, 1f, 2s, 2p, 1g, 2d. These orbitals are diffuse and delocalized over the periphery of the second solvation shell.

8.
J Phys Chem A ; 123(51): 10961-10967, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31794215

RESUMO

A double Rydberg anion (DRA) consists of a saturated, closed-shell, molecular cation and two electrons that occupy diffuse orbitals. Techniques of ab initio electron propagator theory (EPT) predict the existence and spectra of three new classes of DRAs. The first, with the formula NH4-n(CH3)n-, has vertical electron detachment energies (VEDEs) that vary between 0.24 and 0.39 eV and corresponding Dyson orbitals that accumulate near the periphery of N-H bonds. An internal hydrogen bond that forms a ring with five members occurs in the second class. In paramagnetic DRA isomers, electrons are assigned to two, diffuse, triplet-coupled spin-orbitals that localize outside the N-H bonds of a cationic, tetrahedral center or outside bonds on a nearby amide or methyl group. Effects of delocalization, dispersion, and radial correlation between diffuse electrons on VEDEs are described in terms of Dyson orbitals and their pole strengths. These concepts of EPT connect ground-state and spectral properties to each other and provide a rigorous, systematic, and insightful approach to predicting and characterizing novel patterns of chemical bonding and molecular electronic structure.

9.
Phys Chem Chem Phys ; 21(13): 7090-7097, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30882119

RESUMO

Ground and excited electronic states of V(NH3)0,±6 complexes, investigated with ab initio electronic structure theory, consist of a V(NH3)62+ core with up to three electrons distributed over its periphery. This result extends the concept of super-atomic, solvated-electron precursors from alkali and alkaline-earth complexes to a transition metal. In the approximately octahedral ground state of V(NH3)6, three unpaired electrons occupy 3dxz, 3dyz and 3dxy (t2g) orbitals of vanadium and two electrons occupy a diffuse 1s outer orbital. The lowest excitations involve promotion of diffuse 1s electrons to 1p or 1d diffuse orbitals, followed by a 3d (t2g → eg) transition. V(NH3)6+ is produced by removing a diffuse 1s electron, whereas the additional electron in V(NH3)6- populates a 1p diffuse orbital. The adiabatic ionization energy and electron affinity of V(NH3)6 equal 3.50 and 0.48 eV, respectively.

10.
Phys Chem Chem Phys ; 20(37): 24186-24191, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30209476

RESUMO

Tetra-amino lithium and sodium complexes M(NH3) (M = Li, Na) have one or two electrons that occupy diffuse orbitals distributed chiefly outside the M(NH3) core. The lowest-energy 1s, 1p, and 1d orbitals follow Aufbau principles found earlier for beryllium tetra-ammonia complexes. Two ground state M(NH3)4 complexes can bind covalently by coupling their 1s1 electrons into a σ-type molecular orbital. The lowest excited states of the [M(NH3)4]2 species are obtained by promoting one or two electrons from this σ to other bonding or anti-bonding σ and π-type molecular orbitals. The electronic structure of solvated electron precursors provides insights into chemical bonding between super-atomic species that are present in concentrated alkali-metal-ammonia solutions.

11.
J Phys Chem Lett ; 9(1): 84-88, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29232138

RESUMO

Tetra-amino beryllium complexes and ions, Be(NH3)40,±, have a tetrahedral Be(NH3)42+ core with one, two, or three outer electrons orbiting its periphery. Our calculations reveal a new class of molecular entities, solvated electron precursors, with Aufbau rules (1s, 1p, 1d, 2s, 1f, 2p, 2d) that differ from their familiar hydrogenic counterparts and resemble those of jellium or nuclear-shell models. The core's radial electrostatic potential suffices to reproduce the chief features of the ab initio results. Wave function and electron-propagator methods combined with diffuse basis sets are employed to calculate accurate geometries, ionization energies, electron affinities, and excitation energies.

13.
Photochem Photobiol Sci ; 7(12): 1449-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19037496

RESUMO

We have revisited the photochromic spiro-dihydroindolizine/betaine (DHI/B) system applying state-of-the-art density functional theory (DFT) calculations in combination with stationary and time-resolved absorption measurements. DHI/B-systems are becoming increasingly important as potential molecular machines, molecular switches, and photoswitchable electron-acceptors. The knowledge of the exact mechanisms of ring opening and closure, as well as of the geometries of DHI and betaine can provide critical information that will enable the design of better molecular machines and optical switches. The first surprising result concerns the electronic structure of the betaines, which is quite different than commonly assumed. The photochemical ring opening of DHI's to betaines is a conrotatory 1,5 electrocyclic reaction, whereas the thermal ring-closing occurs in the disrotatory mode. According to our results, the electrocyclic back reaction of the betaines to the DHI is NOT rate determining, as previously thought, but instead the kinetics are dictated by the cis-trans-isomerization of the betaine.

14.
J Phys Chem A ; 111(40): 10017-9, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17880054

RESUMO

Ab initio and density-functional theory calculations for a family of substituted acetylenes show that removing electrons from these molecules causes the electron density along the C-C bond to increase. This result contradicts the predictions of simple frontier molecular orbital theory, but it is easily explained using the nucleophilic Fukui function-provided that one is willing to allow for the Fukui function to be negative. Negative Fukui functions emerge as key indicators of redox-induced electron rearrangements, where oxidation of an entire molecule (acetylene) leads to reduction of a specific region of the molecule (along the bond axis, between the carbon atoms). Remarkably, further oxidization of these substituted acetylenes (one can remove as many as four electrons!) causes the electron density along the C-C bond to increase even more. This work provides substantial evidence that the molecular Fukui function is sometimes negative and reveals that this is due to orbital relaxation.

15.
J Am Chem Soc ; 128(41): 13350-1, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17031935

RESUMO

Photoelectron spectra of deoxyribonucleotide anions are interpreted with ab initio, electron propagator calculations. Ground-state structures display hydrogen bonds which are not present in less stable minima that resemble Watson-Crick fragment geometries. For the adenosine and thymidine anions, there are two vertical electron detachment energies (VEDEs) within 0.1 eV of each other that correspond to phosphate- and base-centered Dyson orbitals (DOs). The first VEDE of the cytidine anion belongs to a phosphate-centered DO. The anomalously low VEDE of the guanosine anion is assigned to a base-centered, pi DO. Higher VEDEs of all four anions also are assigned.


Assuntos
Ânions/química , Desoxirribonucleotídeos/química , Elétrons , Fosfatos/química , Monofosfato de Adenosina/química , Monofosfato de Citidina/química , Guanosina Monofosfato/química , Estrutura Molecular , Preparações Farmacêuticas , Termodinâmica , Timidina Monofosfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA