Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 974188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059465

RESUMO

High doses of interleukin-2 (IL-2) have been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy, with a ~15% response rate. Remarkably, 7%-9% of patients achieve complete or long-lasting responses. Many patients treated with IL-2 experienced an expansion of regulatory T cells (Tregs), specifically the expansion of ICOS+ highly suppressive Tregs, which correlate with worse clinical outcomes. This partial efficacy together with the high toxicity associated with the therapy has limited the use of IL-2-based therapy. Taking into account the understanding of IL-2 structure, signaling, and in vivo functions, some efforts to improve the cytokine properties are currently under study. In previous work, we described an IL-2 mutein with higher antitumor activity and less toxicity than wtIL-2. Mutein was in silico designed for losing the binding capacity to CD25 and for preferential stimulation of effector cells CD8+ and NK cells but not Tregs. Mutein induces a higher anti-metastatic effect than wtIL-2, but the extent of the in vivo antitumor activity was still unexplored. In this work, it is shown that mutein induces a strong antitumor effect on four primary tumor models, being effective even in those models where wtIL-2 does not work. Furthermore, mutein can change the in vivo balance between Tregs and T CD8+ memory/activated cells toward immune activation, in both healthy and tumor-bearing mice. This change reaches the tumor microenvironment and seems to be the major explanation for mutein efficacy in vivo.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Neoplasias , Linfócitos T Reguladores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Interleucina-2/genética , Interleucina-2/imunologia , Melanoma , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
2.
Sci Rep ; 9(1): 800, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692603

RESUMO

Selection from a phage display library derived from human Interleukin-2 (IL-2) yielded mutated variants with greatly enhanced display levels of the functional cytokine on filamentous phages. Introduction of a single amino acid replacement selected that way (K35E) increased the secretion levels of IL-2-containing fusion proteins from human transfected host cells up to 20-fold. Super-secreted (K35E) IL-2/Fc is biologically active in vitro and in vivo, has anti-tumor activity and exhibits a remarkable reduction in its aggregation propensity- the major manufacturability issue limiting IL-2 usefulness up to now. Improvement of secretion was also shown for a panel of IL-2-engineered variants with altered receptor binding properties, including a selective agonist and a super agonist that kept their unique properties. Our findings will improve developability of the growing family of IL-2-derived immunotherapeutic agents and could have a broader impact on the engineering of structurally related four-alpha-helix bundle cytokines.


Assuntos
Substituição de Aminoácidos , Antineoplásicos/farmacologia , Interleucina-2/genética , Receptores Fc/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Visualização da Superfície Celular , Sobrevivência Celular/efeitos dos fármacos , Evolução Molecular , Humanos , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Engenharia de Proteínas , Receptores Fc/genética
3.
J Immunol ; 200(10): 3475-3484, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618524

RESUMO

IL-2 is critical for peripheral tolerance mediated by regulatory T (Treg) cells, which represent an obstacle for effective cancer immunotherapy. Although IL-2 is important for effector (E) T cell function, it has been hypothesized that therapies blocking IL-2 signals weaken Treg cell activity, promoting immune responses. This hypothesis has been partially tested using anti-IL-2 or anti-IL-2R Abs with antitumor effects that cannot be exclusively attributed to lack of IL-2 signaling in vivo. In this work, we pursued an alternative strategy to block IL-2 signaling in vivo, taking advantage of the trimeric structure of the IL-2R. We designed an IL-2 mutant that conserves the capacity to bind to the αß-chains of the IL-2R but not to the γc-chain, thus having a reduced signaling capacity. We show our IL-2 mutein inhibits IL-2 Treg cell-dependent differentiation and expansion. Moreover, treatment with IL-2 mutein reduces Treg cell numbers and impairs tumor growth in mice. A mathematical model was used to better understand the effect of the mutein on Treg and E T cells, suggesting suitable strategies to improve its design. Our results show that it is enough to transiently inhibit IL-2 signaling to bias E and Treg cell balance in vivo toward immunity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Interleucina-2/antagonistas & inibidores , Linfocinas/farmacologia , Neoplasias/terapia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/metabolismo , Tolerância Periférica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...